
www.manaraa.com

Software engineering project 

management

D. Murray and N. Sandford

CO3353

2013

Undergraduate study in 
Computing and related programmes

This is an extract from a subject guide for an undergraduate course offered as part of the 

University of London International Programmes in Computing. Materials for these programmes 

are developed by academics at Goldsmiths.

For more information, see: www.londoninternational.ac.uk



www.manaraa.com

This guide was prepared for the University of London International Programmes by:

Dianne Murray

Neil Sandford

Putting People Before Computers, London, UK.

This is one of a series of subject guides published by the University. We regret that due to pressure of work 

the authors are unable to enter into any correspondence relating to, or arising from, the guide. If you have 

any comments on this subject guide, favourable or unfavourable, please use the form at the back of this 

guide.

University of London International Programmes 

Publications Office 

32 Russell Square 

London WC1B 5DN 

United Kingdom 

www.londoninternational.ac.uk

Published by: University of London

© University of London 2013

The University of London asserts copyright over all material in this subject guide except where otherwise 

indicated. All rights reserved. No part of this work may be reproduced in any form, or by any means, without 

permission in writing from the publisher. We make every effort to respect copyright. If you think we have 

inadvertently used your copyright material, please let us know.



www.manaraa.com

Contents

i

Contents

Preface....................................................................................................................... 1
About this course and subject guide.................................................................................. 1
Course aims................................................................................................................................... 1
Essential reading textbooks.................................................................................................... 1
Cornerstones of SE project management.......................................................................... 2
Further reading material.......................................................................................................... 2
Additional resources.................................................................................................................. 3
Learning objectives.................................................................................................................... 3
Learning outcomes for the subject guide......................................................................... 4
Suggested study time............................................................................................................... 4
Assessment................................................................................................................................... 4
Coursework guidance............................................................................................................... 5
Examination guidance.............................................................................................................. 6
List of acronyms.......................................................................................................................... 6

Introduction: the need for software engineering........................................................... 9
References cited.......................................................................................................................... 9
Overview........................................................................................................................................ 9
The subject guide and the Rational Unified Process (RUP).......................................11
Summary of Introduction: the need for software engineering...............................14
Test your knowledge and understanding: seven important references...............14

Part 1: Inception phase...............................................................................................15

Chapter 1: Software processes.....................................................................................15
Learning outcomes..................................................................................................................15
Essential reading ......................................................................................................................15
Further reading..........................................................................................................................15
References cited .................................................................................................................................... 15
Overview......................................................................................................................................16
Process modelling....................................................................................................................17
Key concepts: phases and iteration, milestones and artefacts................................17
Milestones...................................................................................................................................18
The UP approach.......................................................................................................................19
Artefacts.......................................................................................................................................21
Relationship between the UML and UP............................................................................21
Agile methods............................................................................................................................22
The project management perspective.............................................................................23
Reminder of learning outcomes.........................................................................................26
Test your knowledge and understanding: defining appropriate models............26

Chapter 2: Requirements engineering.........................................................................27
Learning outcomes..................................................................................................................27
Essential reading ......................................................................................................................27
References cited........................................................................................................................27
Overview......................................................................................................................................27
Software Requirements Specifications.............................................................................30
Key concepts: gathering, analysing and formalising requirements.......................31
The project management perspective.............................................................................31
Reminder of learning outcomes.........................................................................................34
Test your knowledge and understanding: gathering evidence..............................34



www.manaraa.com

CO3353 Software engineering project management

ii

Chapter 3: Planning, cost and schedule estimation.......................................................35
Learning outcomes..................................................................................................................35
Essential reading ......................................................................................................................35
Further reading..........................................................................................................................35
References cited........................................................................................................................35
Overview......................................................................................................................................35
Plan-driven development and agile development......................................................36
Key concepts: time, money and quality...........................................................................37
The project management perspective.............................................................................40
Reminder of learning outcomes.........................................................................................43
Test your knowledge and understanding: The PRINCE2 approach........................43
Summary of the inception phase.......................................................................................43

Part 2: Elaboration phase............................................................................................45

Chapter 4: Risk management......................................................................................45
Learning outcomes..................................................................................................................45
Essential reading.......................................................................................................................45
Further reading..........................................................................................................................45
References cited........................................................................................................................45
Overview......................................................................................................................................45
Key concepts: Risk Mitigation, Monitoring and Management (RMMM)...............45
The project management perspective.............................................................................48
Reminder of learning outcomes.........................................................................................53
Test your knowledge and understanding: risk breakdown structure....................53

Chapter 5: Architecture, modelling and design.............................................................55
Learning outcomes..................................................................................................................55
Essential reading.......................................................................................................................55
Further reading..........................................................................................................................55
References cited........................................................................................................................55
Overview......................................................................................................................................55
Key concepts: classes, flows and behaviours..................................................................57
The project management perspective.............................................................................59
Reminder of learning outcomes.........................................................................................60
Test your knowledge and understanding:  familiarity with the UML ...................61

Chapter 6: Managing the execution of the project plan.................................................63
Learning outcomes..................................................................................................................63
Essential reading.......................................................................................................................63
Further reading..........................................................................................................................63
References cited........................................................................................................................63
Overview......................................................................................................................................63
Team size......................................................................................................................................64
Key concepts: governance and communication flows...............................................65
The project management perspective.............................................................................67
Reminder of learning outcomes.........................................................................................71
Test your knowledge and understanding: management practices and  
team roles....................................................................................................................................71
Summary of the elaboration phase...................................................................................72



www.manaraa.com

Contents

iii

Part 3: Construction phase..........................................................................................73

Chapter 7: Detailed design..........................................................................................73
Learning outcomes..................................................................................................................73
Essential reading.......................................................................................................................73
References cited........................................................................................................................73
Overview......................................................................................................................................73
Agile object-oriented design................................................................................................76
Key concepts: design patterns and re-use.......................................................................77
The project management perspective.............................................................................78
Standards.....................................................................................................................................79
Reminder of learning outcomes.........................................................................................79
Test your knowledge and understanding: development strategies......................79

Chapter 8: Quality management..................................................................................81
Learning outcomes..................................................................................................................81
Essential reading.......................................................................................................................81
Further reading..........................................................................................................................81
References cited........................................................................................................................81
Overview......................................................................................................................................81
Quality Management Strategy (QMS)...............................................................................82
Test plans.....................................................................................................................................84
Test cases.....................................................................................................................................84
Other forms of testing.............................................................................................................86
The project management perspective.............................................................................87
Cleanroom...................................................................................................................................88
Metrics: what to measure, how to measure and why..................................................89
Reminder of learning outcomes.........................................................................................90
Test your knowledge and understanding: quality management...........................90
Summary of the construction phase.................................................................................91

Part 4: Transition phase..............................................................................................93

Chapter 9: Evolution...................................................................................................93
Learning outcomes..................................................................................................................93
Essential reading.......................................................................................................................93
References cited........................................................................................................................93
Overview......................................................................................................................................93
Evolution of the product........................................................................................................93
Process improvement.............................................................................................................94
Key concepts: process improvement, maturity modelling and agility..................95
The project management perspective.............................................................................96
Managing maintenance.........................................................................................................97
Re-engineering and refactoring..........................................................................................97
Reminder of learning outcomes.........................................................................................98
Test your knowledge and understanding: Plan, Do, Check, Act methodology 
and Task Breakdown Structure............................................................................................98
Summary of the transition phase ......................................................................................98



www.manaraa.com

CO3353 Software engineering project management

iv

Part 5: Review and revision.........................................................................................99

Chapter 10: Case studies..............................................................................................99
Learning outcomes..................................................................................................................99
Essential reading.......................................................................................................................99
Further reading..........................................................................................................................99
Overview......................................................................................................................................99
London Ambulance Service case study............................................................................99
Microsoft case study............................................................................................................. 100
Other case studies................................................................................................................. 100

Appendix 1: Bibliography..........................................................................................103

Appendix 2: Revision support....................................................................................105

Appendix 3: Cornerstones..........................................................................................109

Appendix 4: Revision guidance notes.........................................................................113

Appendix 5: Sample examination paper.....................................................................115

Appendix 6: Outline marking schema for Sample examination paper...........................119



www.manaraa.com

1

Preface

Preface

About this course and subject guide
This is the subject guide for the Computing CO3353 Software engineering project 
management course. It introduces key concepts addressed by the Essential reading 
textbooks. For example, we give overviews of several testing techniques. However, the 
textbooks describe a larger number of techniques and explain them in more detail. The 
subject guide is intended to support and reinforce personal study, not to replace it. It will 
not be possible to pass this course by relying only on the subject guide. Do not cite this 
subject guide in your coursework or examination papers. Instead, go back to the original 
sources.

Software engineering project management focuses on techniques for managing 
software engineering (SE) projects, and builds on core software engineering concepts.  
A pass in Computing CO2226 Software engineering, algorithm design and analysis, 
is therefore a prerequisite, and you will also benefit from some programming experience, 
ideally as part of a team.

Course aims
This course provides an understanding of both theoretical and methodological issues 
involved in modern software engineering project management and focuses strongly on 
practical techniques.

The scale and complexity of the software systems now being developed demands that 
software engineers work in multi-functional teams and that they adopt scalable and 
robust methodologies and tools. As a student of business and creative computing, you 
need to develop the transferable skills in logical analysis, communication and project 
management necessary for working within team-based, professional environments.

You also need to extend your knowledge and understanding of the software 
development lifecycle and fundamental software engineering concepts (such as object-
oriented programming, the software lifecycle, design for re-use and user-centred design). 
In addition to knowing and understanding the principles of traditional development 
methodologies, being able to understand and put to use contemporary approaches (such 
as ‘Agile’ methods of software and project management) will help you to produce more 
robust processes and designs for delivering successful projects.

You should also learn to utilise that knowledge in a variety of contexts, ranging from 
embedded systems to the inherently parallel distributed environments of cloud 
computing.

Essential reading textbooks
Students will need to purchase either Ian Sommerville’s book Software engineering 
(note: this includes advanced engineering topics beyond the scope of this course; such 
as reliability and security issues and the special demands of distributed and embedded 
systems) or Roger Pressman’s book Software engineering: a practitioner’s approach 
(with additional material for students wishing to reinforce their understanding of the 
fundamentals of software engineering and more than a quarter of the book dedicated to 
quality control techniques and testing). Both Essential reading textbooks have associated 
websites and additional online material which will be of benefit. These are the most 
recent editions of two long-standing texts.

Sommerville, I. Software engineering. (Harlow: Pearson Education, 2010) ninth edition 
[ISBN 9780137035151]; www.cs.st-andrews.ac.uk/~ifs/Books/SE9/, http://catalogue.
pearsoned.co.uk/catalog/academic/product/0,1144,0137053460-NTE,00.html

http://www.cs.st-andrews.ac.uk/~ifs/Books/SE9/
http://catalogue.pearsoned.co.uk/catalog/academic/product/0,1144,0137053460-NTE,00.html
http://catalogue.pearsoned.co.uk/catalog/academic/product/0,1144,0137053460-NTE,00.html


www.manaraa.com

2

CO3353 Software engineering project management

Pressman, R.S. Software engineering: a practitioner’s approach. (New York: McGraw Hill, 
2010) seventh edition [ISBN 9780071267823 (pbk); 9780073375977 (hbk)]; www.rspa.
com/sepa7e.html, http://highered.mcgraw-hill.com/sites/0073375977/information_
center_view0; www.mhprofessional.com/product.php?isbn=0073523291

Recommended reading 
This course is structured in accordance with the methodology known as the Rational 
Unified Process (‘Rational’ here being a reference to the company who developed it) 
and you are advised to consider acquiring Philippe Kruchten’s book which extends the 
explanation of the Rational Unified Process (RUP), which is given in the Essential reading  
textbooks. There are descriptions of generic project management workflows (such 
as progress monitoring) as well as specific activities (such as supporting the software 
development environment) in Kruchten, which are missing from both Essential reading 
textbooks.

Kruchten, P. The rational unified process – an introduction. (Boston: Addison Wesley 
Professional, 2004) third edition [ISBN 9780321197702]; www.pearsonhighered.com/
educator/product/Rational-Unified-Process-The-An-Introduction/9780321197702.
page

Cornerstones of SE project management
To complete this course successfully, you will also need to understand and apply some 
key principles and address issues that are specifically relevant to project managers 
responsible for SE projects. Some management activities – and certain interactions and 
interdependencies between activities – are not addressed directly by the recommended 
textbooks. This subject guide highlights what we call the ‘cornerstones’ of SE project 
management – the parts of a structure that hold everything else together. These 
cornerstones are listed in an appendix at the end of the guide.

Cornerstone 1

Project management is a creative activity. It requires a combination of knowledge, insights and skills 

in order to deliver the required outcomes for each unique project. If you do not take into account the 

specific challenges and rely instead on a single standard approach, you are not a project manager, you 

are a project administrator.

Further reading material
Other reading material is suggested in specific chapters, but the following are more 
broadly relevant. All textbooks are listed in the Bibliography in the Appendices section 
of this subject guide and in the Computing Extended Booklist for this course, which 
can be found on the virtual learning environment (VLE). Certain terminology used 
will be explained later in the subject guide or in the ‘List of acronyms’ at the end of the 
preface.

PMI, A guide to the Project Management Body of Knowledge. (PMBOK® guide) (Newtown 
Square, PA: Project Management Institute, 2013) fifth edition [ISBN 9781935589679]; 
www.pmi.org/en/PMBOK-Guide-and-Standards/Standards-Library-of-PMI-
Global-Standards.aspx. This guidebook from a standards organisation contains 
comprehensive and well-structured descriptions of the relevant management 
concepts.

Highsmith, J. Agile project management: creating innovative products. (Boston: Addison 
Wesley Professional, 2010) second edition [ISBN 9780321658395];  
www.pearsonhighered.com/educator/product/Agile-Project-Management-Creating-
Innovative-Products/9780321658395.page  This author analyses agility as an approach 
to project management and this is not just a guide to managing agile projects.

http://www.rspa.com/sepa7e.html
http://www.rspa.com/sepa7e.html
http://highered.mcgraw-hill.com/sites/0073375977/information_center_view0
http://highered.mcgraw-hill.com/sites/0073375977/information_center_view0
http://www.mhprofessional.com/product.php?isbn=0073523291
http://www.pearsonhighered.com/educator/product/Rational-Unified-Process-The-An-Introduction/9780321197702.page
http://www.pearsonhighered.com/educator/product/Rational-Unified-Process-The-An-Introduction/9780321197702.page
http://www.pearsonhighered.com/educator/product/Rational-Unified-Process-The-An-Introduction/9780321197702.page
http://www.pmi.org/en/PMBOK-Guide-and-Standards/Standards-Library-of-PMI-Global-Standards.aspx
http://www.pmi.org/en/PMBOK-Guide-and-Standards/Standards-Library-of-PMI-Global-Standards.aspx
http://www.pearsonhighered.com/educator/product/Agile-Project-Management-Creating-Innovative-Products/9780321658395.page
http://www.pearsonhighered.com/educator/product/Agile-Project-Management-Creating-Innovative-Products/9780321658395.page


www.manaraa.com

3

Preface

Cockburn, A. Agile software development: the cooperative game. (Boston: Addison Wesley 
Professional, 2006) second edition [ISBN 9780321482754]; www.pearsonhighered.
com/educator/product/Agile-Software-Development-The-Cooperative-
Game/9780321482754.page  Highsmith’s collaborator provides further insights into 
the philosophy and application of agile methods. Be warned that locating issues 
in Highsmith or Cockburn is sometimes made more difficult by a predilection for 
colloquial and polemical terminology such as ‘argh-minutes’ and ‘…agile teams don’t 
need plans’.

Beyer, H. User-centred agile methods. (Synthesis lectures on human-centred informatics). 
(Morgan & Claypool Publishers, 2010) [ISBN 9781608453726].

Lund, A. User experience management: essential skills for leading effective UX teams. 
(Morgan Kauffmann, 2011) [ISBN 9780123854964].

Additional resources
1.	 Archive material (papers, videos and adjunct proceedings) of SE-related 

conferences:

The ACM SIGCHI User Interface and Software Technology (UIST) archive (http://uist.
org/archive), contains material presented at the conferences from 1988–2013, as well 
as interviews with early UIST pioneers.

The major SE conferences series have many online resources, along with the 
conference papers. Look for those such as: Requirements Engineering, International 
Conference on Software Engineering (ICSE), Conference on Object-Oriented 
Programming Systems, Languages, and Applications (OOPSLA), IFIP – World Computer 
Congress.

2.	 Case studies (such as those presented by the Essential reading textbook authors):

•	 Sommerville: www.cs.st-andrews.ac.uk/~ifs/Books/SE9/CaseStudies/index.html

•	 Pressman and Lowe: www.SafeHomeAssured.com

3.	 Video material in repositories (of which there are many), such as:

•	 Academic Earth: http://academicearth.org/subjects/computer-science

•	 Google tech talks: http://research.google.com/video.html

•	 VideoLectures.net: http://videolectures.net/Top/Computer%5FScience

Note: Unless otherwise stated, all websites in this subject guide were accessed in July 
2013. We cannot guarantee, however, that they will stay current and you may need to 
perform an internet search to find the relevant pages.

Detailed reading references in this subject guide refer to the editions of the set textbooks 
listed above. New editions of one or more of these textbooks may have been published 
by the time you study this course. You can use a more recent edition of any of the books; 
use the detailed chapter and section headings and the index to identify relevant readings. 
Also check the VLE regularly for updated guidance on readings. Most authors provide 
links and ‘Changes tables’ or ‘Correspondences’ to help you migrate from earlier versions 
to the most recent updated versions of their textbooks. For the latest textbooks, web 
support is almost always available and, sometimes, there is an accompanying CD.

Diagrams
Note that colour versions of some of the  diagrams in the  subject guide are available in 
the electronic version; you may find them easier to read in this format.

Learning objectives
You should, at the end of the course, be able to draw upon appropriate techniques 
and have sufficient background knowledge to ensure good software engineering 

http://www.pearsonhighered.com/educator/product/Agile-Software-Development-The-Cooperative-Game/9780321482754.page
http://www.pearsonhighered.com/educator/product/Agile-Software-Development-The-Cooperative-Game/9780321482754.page
http://www.pearsonhighered.com/educator/product/Agile-Software-Development-The-Cooperative-Game/9780321482754.page
http://uist.org/archive
http://uist.org/archive
http://www.cs.st-andrews.ac.uk/~ifs/Books/SE9/CaseStudies/index.html
http://www.SafeHomeAssured.com/
http://academicearth.org/subjects/computer-science
http://research.google.com/video.html
http://videolectures.net/Top/Computer_Science


www.manaraa.com

4

CO3353 Software engineering project management

management practices. You should gain the ability to select tools and methodologies that 
are fit for specific purposes, rather than encouraging a ‘one size fits all’ approach.

Learning outcomes for the subject guide
Having completed this subject guide, including the Essential reading and activities, you 
should be able to:

•	 demonstrate that you have acquired a structured view of the overall process of 
software development, with greater understanding of its main phases, specific 
notations and the specification and development tools employed

•	 show that you have developed a broader understanding of software engineering as 
a discipline, recognising its relationship and interactions with other computing and 
design disciplines

•	 demonstrate the ability to structure a problem into natural components and evaluate 
critically a piece of analysis and development work

•	 demonstrate your understanding of the implications of computer and network 
architectures for system-level design and development

•	 demonstrate that you understand how to identify, select and apply appropriate 
methods and tools for the development of solutions to specific real-world 
problems

•	 show that you can explain what it means to work effectively as part of a software 
development project team following a recognised development methodology, 
including the need to communicate effectively through written, oral and other forms 
of technical presentation.

Suggested study time
The Student Handbook states the following: ‘To be able to gain the most benefit from the 
programme, and hence do well in the examinations, it is likely that you will have to spend 
at least 300 hours studying for each full course, though you are likely to benefit from 
spending up to twice this time’. Note that this subject is a half unit.

It is suggested that a chapter of the subject guide be read in detail, and immediate notes 
taken, each week. At the same time, the associated readings and web-based material 
should be reviewed. It is advisable to attempt the practice questions and to access 
relevant case study or video material when studying a particular topic. Some of these may 
be design exercises involving paper and pen prototyping, so sufficient time should be set 
aside, depending on how many are chosen. Revision should take place over a number 
of weeks before the examination, and practice examination questions undertaken on a 
timed basis.

Assessment
Important: The information and advice given are based on the examination structure 
used at the time this guide was written. Please note that subject guides may be 
used for several years. Because of this we strongly advise you to always check the 
current Regulations for relevant information about the examination. You should also 
carefully check the rubric/instructions on the paper you actually sit and follow those 
instructions.

The course is assessed by an unseen written examination consisting of three (out of a 
choice of five) questions. Guidance on how to prepare for examination questions is given 
in the next section. 

There are also separate coursework assignment(s). Please note that the coursework 
assignments will not be the same as those that have previously been set for CO3314 
Software engineering management and will change each year.



www.manaraa.com

5

Preface

Coursework guidance
A detailed statement of what is required for your coursework assignments will be 
provided, with the marking scheme clearly indicated and suitable references given. 
Coursework assignments will be based on a prepared case study and will test the 
understanding and application of the techniques of software engineering project 
management covered in the syllabus. You should be able to structure a problem into 
natural components and to critically evaluate your own analysis and development work, 
presenting your material and arguments in an effective and informative manner.

The following guidance will help you to produce the appropriate standard of 
coursework:

•	 You should write in a report or essay format – not in note or bullet-point form – with 
a defined structure as detailed in the coursework assignment instructions. You do 
not need to restate the question asked or provide a table of contents, an index or 
a coversheet, or any extra information or appendices, and you should attempt to 
present your work both clearly and concisely. However, very short submissions are 
unacceptable.

•	 The structure, clarity and organisation of your work will be assessed and some marks 
may be awarded for it. Your submission must be well-presented in a coherent and 
logical fashion. It should be spell- and grammar-checked and you should structure it 
so that you have both a clear introduction and a conclusion. A concluding section is a 
required part of your coursework submission.

•	 You should include relevant diagrams, drawings or illustrations as graphics and 
screenshots. Note that these will have an impact on readability and presentation 
values.

•	 You must provide a References section at the end of your work, showing the books, 
articles and websites that you have referenced and consulted. All books cited, reports 
referred to and any material used (including all online resources) must be referenced. 
Students who do not provide references, or cite only the course textbook and subject 
guide, will be marked down.

•	 Websites should be referenced by the date of access and a complete and correct URL 
(generic site names are not acceptable). Other references should be in a standard 
format (namely, author names (correctly spelled, and with the correct last and 
first names or initials), year of publication, title, publisher, actual page numbers 
referenced). For a useful guide to referencing procedure, look, for example, at:  
http://education.exeter.ac.uk/dll/studyskills/harvard_referencing.htm  There are also 
guidelines for referencing in the CO3320 Project guide. The submitted assignment 
must be your own work and must not duplicate another’s work. Copying, plagiarism 
and unaccredited and wholesale reproduction of material from textbooks or from 
any online source are unacceptable. Any such work will be severely penalised or 
rejected. Any text that is not your own words and which is taken from any source must 
be placed in quotation marks and the source identified correctly in the References 
section. Failure to do so will incur serious penalties.

•	 Do try to be selective and critical in your choice of material and be extremely careful 
about the validity of information on internet sites and web sources. Citing and copying 
from Wikipedia and other encyclopaedic sources, for example, is not appropriate for 
a coursework submission. Note that personal or company-sponsored blogs, social 
networking material (such as Twitter or Facebook) or comments on any other type of 
posted transitory material cannot be used as references for academic work. Be aware 
that many information sites are really commercial advertising, or simply reproduce 
unvalidated and unchecked material from elsewhere.

http://education.exeter.ac.uk/dll/studyskills/harvard_referencing.htm.There


www.manaraa.com

6

CO3353 Software engineering project management

•	 Do check the date of all material and do not use out of date sites, sites which list 
student work or projects, references from commercial publishers to journal paper 
abstracts only, or those which are simply personal opinions, blogs or comments.

Examination guidance
Failure to take account of the following points means that questions will not be answered 
as well as they should be.

Take a few minutes to make a plan of each question and to gather your thoughts instead 
of immediately starting to write. Organise your time in the examination to allow sufficient 
time to read over what you have written and to make any necessary corrections.

Ensure that you fully understand the topic area of the question (which will be related to 
the course outline). Check that you can answer every part and subsection of the question. 
It is generally better to answer three questions as fully as you can, rather than, for 
example, some in excessive detail and others very briefly.

Ensure that you understand what type of answer is expected. Read the question carefully 
and answer in the way that is requested: the wording will indicate the expected kind of 
answer and level of detail.

Ensure that the level of detail of the answer you give corresponds to the marks for that 
part. Try to achieve the balance reflected in the marks indicated. Do not spend excessive 
time and effort on a subsection of the question that is worth only a very small percentage 
of the overall marks. Similarly, do not write cryptic notes or single points for a part of the 
question that is worth a significant percentage of the available marks.

Ensure that you do provide diagrams or examples where requested since this is part of 
the marking scheme for that question. All figures and diagrams should be clearly labelled 
and described. Use tables and lists where appropriate – for example, in a question 
which asks you to contrast two approaches or itemise the differences between two 
techniques.

Do not waste time by:

•	 providing unnecessary diagrams where this is not required

•	 restating the question in your own words or repeating the question text

•	 answering one question in great detail at the expense of others

•	 repeating details from one part of the question in another part.

List of acronyms
Below is a list of acronyms which are relevant to this subject. You may wish to add to this 
list as you study. 

ATAM Architectural Trade-off Analysis Method

AUP Agile Unified Process

CASE Computer-aided Software Engineering

CMMI Capability Maturity Model Integration

COCOMO COnstructive COst MOdel

COTS Commercial Off The Shelf (software) components

CSR Critical Software Reviews

CUPRIMDSO Capability, Usability, Performance, Reliability,  
Install-ability, Maintainability, Documentation,  
Serviceability and Overall

DFD Data Flow Diagram



www.manaraa.com

7

Preface

DSDM® Dynamic Systems Development Method

ERP Enterprise Resource Planning

FPA Function Point Analysis

FSAR Final Software Acceptance Review

FURPS Functionality, Usability, Reliability, Performance,  
Supportability

GQM Goals, Questions, Metrics

IDE Integrated Design Environment

IPM Integrated Project Management (CMMI Level 3)

ISO/IEC International Standards Organisation/International  
Electrotechnical Commission

ITIL Information Technology Infrastructure Library

LASCAD London Ambulance Service Computer-Aided  
Despatch system

LOC Lines of Code

MVC Model, View, Controller architecture

OGC Office of Government Commerce (UK Government)

OO Object Oriented

PDCA ‘Plan Do Check Act’

PERT Program Evaluation and Review Technique

PFD Product Flow Diagram

PID Project Initiation Documentation

PMBOK® Project Management Body of Knowledge

PMC Project Monitoring and Control (CMMI Level 3)

PMI Project Management Institute

PP Project Planning (CMMI Level 3)

PRINCE2 PRojects IN Controlled Environments

PSR Preliminary Software Review

QA Quality Assurance

QM Quality Management

QMS Quality Management Strategy

QPM Quantitative Project Management (CMMI Level 3)

RBS Risk Breakdown Structure

REQM Requirements Management (CMMI Level 3)

RMMM Risk Mitigation, Monitoring and Management

RSKM Risk Management (CMMI Level 3)

RUP Rational Unified Process

SAM Supplier Agreement Management (CMMI Level 3)

SEI Software Engineering Institute (Carnegie Mellon  
University, USA).

SOA Service-Oriented Architecture

SRS Software Requirements Specifications

SWOT Strengths, Weaknesses, Opportunities and Threats



www.manaraa.com

8

CO3353 Software engineering project management

UML Unified Modeling Language

UP Unified Process

V & V Verification and Validation

WBS Work Breakdown Structure

XP eXtreme Programming



www.manaraa.com

9

Introduction: the need for software engineering

Introduction: the need for software engineering

References cited testing
Cook, S. ‘What the lessons learned from large, complex, technical projects tell us about 

the art of Systems Engineering’, Proceedings of INCOSE 2000 Annual Symposium, 
Minneapolis, pp.723–30.

Fagan, M.E. ‘Design and code inspections to reduce errors in program development’, IBM 
Systems Journal 15(3) 1970, pp.182–211. (Available from IBM under Reprint Order No. 
G321-5433.)

Hosier, W.A. ‘Pitfalls and safeguards in real-time digital systems with emphasis on 
programming’, IRE Transactions on Engineering Management EM-8(2) 1961, pp.99–115.

Liskov, B. and S. Zilles ‘Programming with abstract data types’, Proceedings of ACM SIGPLAN 
Symposium, 1974, pp.50–59.

Naur, P. and B. Randell (eds) ‘Software engineering. Report on a conference held in 
Garmisch, Oct. 1968, sponsored by NATO’.

Parnas, D.L. ‘Abstract types defined as classes of variables’, ACM SIGPLAN Notices II 2 1976, 
pp.149–54.

Royce, W.W. ‘Managing the development of large software systems: concepts and 
techniques’, Proceedings of the IEEE 1970.

Wirth, N. (2008) ‘A brief history of software engineering’; www.inf.ethz.ch/personal/wirth/
Articles/Miscellaneous/IEEE-Annals.pdf

Overview
The term ‘Software Engineering’ (SE) comes from recognition that formal methods and 
more sophisticated tools and techniques were needed to address the challenge of  
‘…the construction of systems by large groups of people’ (Naur and Randell, 1968), 
specifically real-time systems.

These ‘frequently present unusually strict requirements for speed, capacity, reliability and 
compatibility, together with the need for a carefully designed stored program’ (Hosier, 
1961). These features, particularly the last, have implications that are not always foreseen 
by management. 

Stephen Cook treats software engineering as a subset of the broader discipline of systems 
engineering, and sets the tone for this course when he advises the reader that:

‘Systems engineering should not be considered merely a set of procedures to be 
followed. Rather, it is a … way of thinking that encompasses a set of competencies 
and a set of processes that can be invoked as needed, each of which can be 
achieved through a range of methods. An important aspect of systems engineering 
is the selection and tailoring of the processes to suit each project.’ (Cook, 2000) 

This reflects the need to balance between sometimes incompatible criteria such as 
functionality and reliability. Martin Rinard wrote:

‘This combination is challenging because of the inherent tension between these 
two properties. Increasing the functionality increases the complexity, which in turn 

‘It is unfortunate that people dealing with computers often have little interest in 
the history of their subject. As a result, many concepts and ideas are propagated 
and advertised as being new, which existed decades ago, perhaps under a different 
terminology.’ (Wirth, 2008) 

http://www.inf.ethz.ch/personal/wirth/Articles/Miscellaneous/IEEE-Annals.pdf
http://www.inf.ethz.ch/personal/wirth/Articles/Miscellaneous/IEEE-Annals.pdf


www.manaraa.com

10

CO3353 Software engineering project management

increases the difficulty of ensuring that the software executes reliably without errors.’ 
(See: http://people.csail.mit.edu/rinard/paper/oopsla03.acceptability.pdf ) 

Software engineering covers the entire product lifecycle, from definition of requirements, 
through the design and development phase, all-important testing and delivery of long-
term stakeholder benefits.

Two essential weaknesses of the early ‘top-down’ methodologies were the difficulty in 
obtaining complete, correct and appropriate specifications of what the user actually 
needs (and here we are talking both of ‘business’ users and the end-users who are 
typically employees or customers of the ‘business’) and the significant effort in 
development and testing that is inevitable if bespoke solutions are created as part of 
every project.

In most areas of engineering, a top-down approach reflects the predictable nature of the 
interactions between modules or sub-systems, whereas many of the interactions between 
software modules are largely unpredictable and only emerge during final integration. 
This has led to adoption of a range of iterative development processes that recognise 
the importance of user-centred design and prototyping as a way of configuring and 
deploying validated and robust components as part of an overall system.

In his commentary on standards for software lifecycle processes, Raghu Singh of the 
Federal Aviation Administration recognises that the ISO/IEC 12207 development activities 
(see: www.iso.org/iso/catalogue_detail?csnumber=43447):

‘…may be iterated and overlapped, or may be recursed to offset any implied or 
default Waterfall sequence. All the tasks in an activity need not be completed in the 
first or any given iteration, but these tasks should have been completed as the final 
iteration comes to an end. These activities and tasks may be used to construct one 
or more developmental models (such as, the Waterfall, incremental, evolutionary, 
the Spiral, or other, or a combination of these) for a project or an organisation.’  
(See: www.abelia.com/docs/12207cpt.pdf )

The critical success factor is the way in which specialists performing the roles defined in 
the standard are integrated into a team operating within a common framework so that 
their activities are manageable. SE project management is a distinct specialism within the 
team and only the smallest of projects will not need a recognised team leader or project 
manager.

Unsurprisingly, a 2007 survey into project management practices (See: www.pwcprojects.
co/Documentos/BRO Boosting Business Performance DC-07-1104-A v8[1].pdf ) found 
that:

•	 Use of project management methodologies is widespread. Organisations that do not 
have a project management methodology reported lower-performing projects.

•	 Use of project management software positively impacts project performance.

•	 Project management certification and project performance are clearly connected.

•	 Projects with poor management are more likely to suffer from problems like bad 
estimates/missed deadlines, scope changes and insufficient resources – the top three 
reasons for project failure cited by 50 per cent of those interviewed.

Cornerstone 2

Project management is about controlling the strengths and weaknesses of the project team (and 

enterprise) and the opportunities and threats that can arise and lead to issues for the project, the 

‘internal’ and ‘external’ factors of a SWOT analysis.

Software that is being produced today typically falls into one of three categories:

1.	 Software as a component, such as the fuel management system embedded in your 
car.

http://people.csail.mit.edu/rinard/paper/oopsla03.acceptability.pdf
http://www.iso.org/iso/catalogue_detail%3Fcsnumber%3D43447
http://www.pwcprojects.co/Documentos/BRO%20Boosting%20Business%20Performance%20DC-07-1104-A%20v8%5B1%5D.pdf
http://www.pwcprojects.co/Documentos/BRO%20Boosting%20Business%20Performance%20DC-07-1104-A%20v8%5B1%5D.pdf


www.manaraa.com

11

Introduction: the need for software engineering

2.	 Software as a tool, such as an ‘Integrated Development Environment’ (IDE) in which 
other software is developed and maintained.

3.	 Software as a process, no longer simply deployed as a tool to help organisations do 
the things they do, but a result of rethinking what an organisation does and how it 
does it.

The significance of the last of these is that the organisation may be gambling its future 
in a game where it does not understand the rules, let alone have prior experience. This 
may be the case whether the project is seen as being technology-driven (and managed 
by someone with little or no experience of the human-resource issues involved) or 
organisation development-driven (and managed by someone without SE experience).

In his book The change equation, Peter Duschinsky argues that projects fail when ‘…
the complexity of the project exceeds the capability of the organisation to cope with 
the changes needed’ (See: http://wdn.ipublishcentral.net/management_books_2000/
viewinside/207741229298377), where that capability necessarily includes the ability to 
manage both social/cultural factors and technical ones. In the subsequent paper with the 
same title (see: www.irma-international.org/viewtitle/43568) he delivers the message that 
only a quarter of these change projects succeed fully, while another quarter fail to deliver 
any benefit whatsoever.

The SE manager has to achieve a balance between the reliability of the end result and 
its general acceptability for the client (compliance with functional and non-functional 
requirements), its ease of maintenance and its efficient use of resources. There are three 
major sources of risk in software development which make the job more difficult:

•	 Projects are getting larger and more complex and demand more sophisticated tools 
and methodologies, especially in the context of business change programs.

•	 Development teams are also getting larger. Roles and responsibilities, especially those 
requiring people-oriented ‘soft skills’, need to be well-defined and understood.

•	 There are several software development lifecycle models and there is no ‘one size fits 
all’ solution.

The subject guide and the Rational Unified Process (RUP)
You will see that this subject guide does not simply follow the structure of the Essential 
reading textbooks. Rather, we have divided it into four parts, each corresponding to one 
of the phases of IBM’s ‘Rational Unified Process’ which is goal-driven, not activity-driven 
or plan-driven. It views each project phase as the journey from one milestone state to 
another. Each part consists of chapters addressing the key software engineering concepts 
that have to be applied in order to reach the required exit condition for that phase and 
each chapter includes discussion of associated project management issues.

Highsmith talks of a framework of project governance consisting of the Concept phase, 
Expansion phase, Extension phase and Deployment phase. Progression between 
phases is controlled by milestones called ‘phase gates’ which segment the phases and, 
importantly, segment the operational agile cycles of envision, explore and deploy. 
Cockburn says in his book that ‘RUP is not incompatible with the principles’ of agile 
methods. Indeed, there is an ‘Agile Unified Process’ (AUP) developed by Scott Ambler. 
(See: www.ambysoft.com/unifiedprocess/agileUP.html)

There is a clear relationship between Highsmith’s governance framework and the RUP. 
RUP and AUP are sufficiently similar for us to be able to refer to ‘Unified Process’ (UP) 
phases, UP milestones and UP disciplines compatible with agile and more traditional 
approaches.

Software engineering activities and workflows typically span several UP phases and are 
addressed in the subject guide at the most relevant time. For example, the ‘mission’ for 
testing is established in the inception phase but that mission is only achieved through 

http://wdn.ipublishcentral.net/management_books_2000/viewinside/207741229298377
http://wdn.ipublishcentral.net/management_books_2000/viewinside/207741229298377
http://www.irma-international.org/viewtitle/43568
http://www.ambysoft.com/unifiedprocess/agileUP.html


www.manaraa.com

12

CO3353 Software engineering project management

execution of component and system testing in later phases. Discussion of testing is 
therefore deferred until the chapter on the Construction phase.

Each chapter is grouped as part of the four ‘phases’, except for the final chapter, which 
contains case studies.

Part 1: Inception phase – scoping and justifying a project

By the end of the first part, you should understand the software development process, 
project planning and the information needed to enable a project to be described in terms 
of scope and the approach to satisfying requirements.

•	 Chapter 1 reviews the fundamental elements of a software development process and 
the way in which a project manager delivers project results. It also introduces the key 
features of the Unified Process.

•	 Chapter 2 reviews the role of the business case and system requirements as the basis 
for the project plan.

•	 Chapter 3 reviews techniques for project cost estimation and scheduling, with specific 
reference to planning within iterative and agile approaches.

Part 2: Elaboration phase – defining a response to stakeholder needs

By the end of this part, you should understand how to produce a robust implementation 
plan based on a stable architecture and appropriate approaches to risk and quality 
management.

•	 Chapter 4 reviews approaches to risk identification and mitigation.

•	 Chapter 5 reviews techniques for evaluating architectural options and design and 
modelling of system architecture.

•	 Chapter 6 reviews the project manager’s responsibilities for detailed planning, 
people and risk management and the project development environment, including 
configuration management.

Part 3: Construction phase – managing the provision of the functionality agreed

By the end of this part, you should understand what is involved in delivering a version of a 
stable system that can be deployed with real users.

•	 Chapter 7 looks at the implementation workflow, including the use of design 
patterns, design for re-use and management of agile teams.

•	 Chapter 8 reviews approaches to Quality Management (QM) and testing.

Part 4: Transition phase – producing a product release

By the end of this part, you should understand how to manage entry into the post-release 
maintenance cycle and authorise the start of a new development cycle if required.

•	 Chapter 9 addresses deployment issues, including evolution, process improvement 
and management of expectations and change.

Part 5: Review and revision

The final chapter provides a look back on key lessons learned in the form of case studies 
(Chapter 10). There are various appendices to aid revision, in the form of  revision topics, 
and the full list of cornerstones, as well as a Sample examination paper and an outline 
marking schema (Appendix 6).

Each chapter starts with a set of Learning outcomes, detailing the learning objectives for 
that topic and a brief Overview section. Also shown at the beginning of each chapter are 
details of the Essential reading required for full comprehension of the topic – normally 
a chapter in the designated textbooks – and any Additional or Further reading. These 
additional references have been chosen to enhance knowledge and expand coverage and 



www.manaraa.com

13

Introduction: the need for software engineering

are usually books, journal articles or free-access websites. The Bibliography (Appendix 1) 
has the full citable details (and, where available, the online link to the publisher’s website 
page for that book) of all the textbooks and print sources referred to in the subject 
guide. 

There are also References cited sections where appropriate. These are usually citation 
details for quotations or for particular articles or websites referred to. These additional 
links and citations can be followed up, if wished, but it is not mandatory: they do not 
necessarily appear in the Bibliography.

Each chapter concludes with a summary of the main points as an aide-memoir. Reminder 
of learning outcomes and Test your knowledge and understanding sections are given 
at the end of each chapter to help with examination revision and to test understanding 
of the concepts covered in that chapter. Local tutors in institutions may also wish to use 
such suggested topics to lead discussion groups; therefore sample answers are not always 
provided.

INCEPTION
PHASE

PRODUCT
RELEASE

CONSTRUCTION

Module
sections and 

chapters

Core 
activities and 

work�ows

Uni�ed Process 
phases

INITIAL
OPERATING
CAPACITY

LIFECYCLE
ARCHITECTURE

Estimations for costing 
 and schedule

3) COST/SCHEDULE
ESTIMATION

Business model and 
requirement de�nition

2) REQUIREMENTS
ENGINEERING

LIFECYCLE
OBJECTIVES

10) CASE STUDIES

11) REVISION

ELABORATION
PHASE

System architecture 
modelling

Development team and 
environment

CONSTRUCTION
PHASE

TRANSITION
PHASE

U
ni�ed Process  M

ilestones

System reworking and 
deployment

9) EVOLUTION

System and user testing

Design and execution of 
component test plan

MANAGEMENT

Supporting documentation

Object design and 
implementation

7) DETAILED
DESIGN

6) PROJECT 
PLANNING

5) ARCHITECTURE
DESIGN

Risk management 
planning

4) RISK
MANAGEMENT

Software development 
plan1) PROCESS MODELS

8) QUALITY 

Figure 0.1: Architecture of the SE Project Management module and its relationship to the RUP.



www.manaraa.com

14

CO3353 Software engineering project management

A Sample examination paper, together with an outline marking scheme, can be found 
at the end of the subject guide.

A List of acronyms, expanding all the acronyms used in the subject guide, can be found 
in the Preface to the subject guide.

Summary of Introduction: the need for software engineering
•	 Software engineering is a profession, an engineering discipline.

•	 Software engineering covers the entire development process and applies to 
development of all kinds of software system although tools and techniques are rarely 
universal.

Test your knowledge and understanding: seven important references
Investigate the following milestones leading to today’s software engineering 
environment.

1.	 The concept of abstraction developed in the mid-1970s, allowing the details of the 
implementation of a ‘module’ to be hidden behind a published ‘interface’ (Liskoy and 
Zilles, 1974; Parnas, 1976) leading to object-oriented system design with components 
(objects) that have unique properties and behaviours. 

2.	 Recognition that the engineering lifecycle concept also applied to software 
engineering, which led in the mid-1970s to widespread use of the waterfall model 
(see: Royce, 1970), formal software inspection methods for each step (Fagan, 1976), 
comparable to those used to validate electrical circuit diagrams, architectural scale 
plans and the like. The lifecycle approach was formalised as a standard in 1995. (See: 
ISO/IEC 12207, Information Technology – Software life cycle processes (see www.iso.
org/iso/catalogue_detail?csnumber=43447)

3.	 Identification in 1995 of the major factors that cause software projects to fail and key 
ingredients that can reduce project failure, in The Standish Group’s first ‘CHAOS report’. 
(See: www.spinroot.com/spin/Doc/course/Standish_Survey.htm)

4.	 The publication of the ‘Manifesto for Agile Software Development’  
(see: http://agilemanifesto.org/principles.html) by the Agile Alliance in 2001.

5.	 The UK government’s green paper on the development of ‘e-government’ services 
(HM Treasury, 2003) (see: www.publicnet.co.uk/abstracts/2003/10/20/measuring-
the-expected-benefits-of-e-government), which differentiated between four types of 
‘service re-engineering’ from a simple ‘electronic customer interface’ to ‘end-to-end-
process transformation’.

6.	 Growing recognition of strategic priorities that reach beyond ‘on time and on budget’ 
such as stakeholder satisfaction, delivery of benefits, quality of the result and return 
on investment (see: www.pwcprojects.co/Documentos/BRO Boosting Business 
Performance DC-07-1104-A v8[1].pdf ), reported in 2007.

7.	 Widespread ignorance that information sent via cloud email could be stored by 
a service provider in another country with 38 per cent of those surveyed in 2011 
sending valuable or confidential personal information via cloud email or messaging 
services (61 per cent of 18–24 year-olds, compared to 24 per cent of the 55+ age 
group). (See: www.rackspace.co.uk/uploads/involve/user_all/generation_cloud.pdf) 

http://http://www.iso.org/iso/catalogue_detail%3Fcsnumber%3D43447
http://http://www.iso.org/iso/catalogue_detail%3Fcsnumber%3D43447
http://www.spinroot.com/spin/Doc/course/Standish_Survey.htm
http://agilemanifesto.org/principles.html
http://http://www.publicnet.co.uk/abstracts/2003/10/20/measuring-the-expected-benefits-of-e-government/
http://http://www.publicnet.co.uk/abstracts/2003/10/20/measuring-the-expected-benefits-of-e-government/
http://www.pwcprojects.co/Documentos/BRO%20Boosting%20Business%20Performance%20DC-07-1104-A%20v8%5B1%5D.pdf
http://www.pwcprojects.co/Documentos/BRO%20Boosting%20Business%20Performance%20DC-07-1104-A%20v8%5B1%5D.pdf
http://www.rackspace.co.uk/uploads/involve/user_all/generation_cloud.pdf


www.manaraa.com

15

Chapter 1: Software processes

Part 1: Inception phase

Chapter 1: Software processes

Learning outcomes
By the end of this chapter, and having completed the Essential reading and activities, you 
should be able to:

•	 understand the concept of a process model as a way of describing a software 
development project and differentiate between common approaches such as 
waterfall, iterative and agile

•	 identify the key artefacts produced during an iteration of the software development 
process

•	 understand the role of the project manager in delivering those artefacts

•	 understand the ways in which the development process can affect quality.

Essential reading 

Sommerville Pressman
Chapter 2: Software processes Chapter 2: Process models

Further reading
Ambler, S. ‘A Manager’s Introduction to the Rational Unified Process’ (2005);  

www.ambysoft.com/unifiedprocess/rupIntroduction.html
Boehm, B.W. ‘A spiral model of software development and enhancement’, IEEE Computer, 

21(5) 1988, pp.61–72.
Royce, W.W.  ‘Managing the development of large software systems: concepts and 

techniques’, Proceedings of IEEE WESTCON (Los Angeles, 1970), pp.1–9; http://
leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_
winston_royce.pdf 

Scacchi, W. ‘Process models in software engineering’, in J.J. Marciniak (ed.) Encyclopedia 
of software engineering. (New York: John Wiley and Sons, Inc., 2001) second edition 
Volume 2 [ISBN 9780471210078].

References cited 

Booch, G., J. Rumbaugh and I. Jacobson Unified modeling language user guide. (New York: 
Addison Wesley Professional, 2005) second edition [ISBN 9780321267979].

Highsmith J. Agile project management. (Boston: Addison Wesley, 2009) second edition 
[ISBN 9780321658395]. 

PMI, A guide to the project management body of knowledge. (PMBOK® guide) (Newtown 
Square, PA: Project Management Institute, 2013) fifth edition [ISBN 9781935589679]; 
www.pmi.org/en/PMBOK-Guide-and-Standards/Standards-Library-of-PMI-Global-
Standards.aspx

Sutherland, J. ‘Agile development: lessons learned from the first Scrum’ (2004–10);  
www.scrumalliance.org/resources/35

http://www.ambysoft.com/unifiedprocess/rupIntroduction.html
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf
http://leadinganswers.typepad.com/leading_answers/files/original_waterfall_paper_winston_royce.pdf
http://www.pmi.org/en/PMBOK-Guide-and-Standards/Standards-Library-of-PMI-Global-Standards.aspx
http://www.pmi.org/en/PMBOK-Guide-and-Standards/Standards-Library-of-PMI-Global-Standards.aspx
http://www.scrumalliance.org/resources/35


www.manaraa.com

16

CO3353 Software engineering project management

Overview
The development of a bespoke software system can be thought of as a process with three 
‘actors’:

•	 A system user, whose requirements determine the intended scope and behaviour of 
the system.

•	 A team of system engineers who translate that specification into a design for the 
system.

•	 The system created from that design.

From the customer’s perspective, the project team should be able to take the stated 
needs and implement and maintain the system through until the end of its useful life. 
In an ideal world, the process continues smoothly, perhaps through several iterations 
(versions) over time.

However, as all software developers know to their cost, customer needs change and the 
real world is rarely ideal. This leads to mismatches between what was intended and what 
actually occurred, which impacts on one or more of the three actors. Errors introduced 
and not trapped locally can have costly repercussions and steps need to be taken to limit 
the impact.

An error in the software engineer’s understanding of requirements will affect the ability to 
address the system user’s needs and result in reworking of the ‘specify’ activity.

A mistake in the creation of the system designed to meet those needs will result in 
reworking of the ‘design’ activity.

A failure on the part of the client to plan and support the deployment of the system will 
impact on the performance of the system and its users and reworking of the ‘deploy’ 
phase.

SYSTEM USER

DESIGN

SYSTEM
SOFTWARE 
ENGINEERS

Figure 1.1: Failure in the development process.



www.manaraa.com

17

Chapter 1: Software processes

Process modelling
Both recommended textbooks review and compare the most common types of software 
development process models in use today. There are useful process models that rely 
on iteration, such as incremental development, prototyping and incremental delivery. 
Process models can be activity-driven (such as the simple waterfall), plan-driven (the 
German ‘V-Modell’ and Boehm’s ‘Spiral’ are both predicated on the existence of an overall 
project plan) or goal-driven (such as the UP’s milestones, or the targets that drive the 
SCRUM technique (see Sutherland, 2004–10)).

Cornerstone 3

A process model is a high-level and incomplete description of the way a project is controlled and 

how it evolves. It introduces interfaces between actors and workflows and transitions between 

activities. Your choice of model does not fundamentally affect what you are going to do; customers 

still need to know that their requirements are the reference point for design and code still needs to be 

tested before and after integration. What the model allows you and your team to do is focus on the 

important transitions during the project.

Key concepts: phases and iteration, milestones and artefacts

Phases
The classical linear process model is the waterfall (Royce, 1970) shown in Figure 1.2. It 
begins with requirements which are the basis for specification. The expectation is that 
each activity in the process is visited once and its output is fit for purpose.

System 
requirements

Software 
requirements

Analysis

Program 
design

Coding

Testing

Operations

Figure 1.2: The classical waterfall model.



www.manaraa.com

18

CO3353 Software engineering project management

Figure 1.3 takes the waterfall testing phase and sub-divides it in accordance with the 
V-Modell approach to verification and validation. Localised testing is efficient but errors 
that remain undetected until acceptance testing still require reworking of everything that 
is a response to requirements. Quality issues are addressed in Chapter 8 of the subject 
guide.

Operations

System
analysis / 

design
Integration 

testing

Detailed 
design 

(coding)
Unit testing

Acceptance 
test plan

System  and 
software 

requirements
Acceptance 

testing

Code base

Integration 
test plan

Component 
test plan

Figure 1.3: Waterfall model modified to V-Modell format.

Milestones
Royce’s 1970 paper is best known for its description of the linear process we call the 
classical waterfall. Royce also proposed formal review-points or milestones and test-plans 
which can be drawn up once the final software review has validated the program design. 
He suggested a ‘Preliminary Software Review’ (PSR) between supplier and customer 
before formally moving on to the analysis phase, based on a preliminary program 
design which acts as a form of prototype to guide design and coding. As work develops, 
‘Critical Software Reviews’ (CSRs) can be scheduled with the customer, to further inform 
the coding process. Finally, the transition from testing to operational deployment is 
controlled by a ‘Final Software Acceptance Review’ (FSAR) between the testing and 
operations phases.

The goal is to minimise the wasted work that results from re-iteration of previous phases. 
The PSR, CSR and FSAR are not simply reviews of what has happened already, they 
prevent problems being fed forward into the next phase. In this respect, they are akin to 
quality gates or milestones. The reviews have a significant effect on the way phases are 
re-iterated.

Since a CSR validates that the program design is a true expression of the output of the 
analysis phase, there is no point in looking at the program design for the source of an 
error found during the coding phase. It must have been present at the end of analysis – 
and perhaps even further back.



www.manaraa.com

19

Chapter 1: Software processes

The complete architecture proposed by Royce in 1970 – with milestones, prototypes and 
code reviews – would look something like the iterated linear process in Figure 1.4. 
The topic of project planning is covered in detail in Chapter 6 of the subject guide.

System 
requirements

Software 
requirements

Analysis

Program 
design

Coding

Testing

Operations

P S R

C S R

F S A R

Preliminary 
program 

design

Prototype

Test Plan

Figure 1.4: Controlling the waterfall, after Royce. 

The UP approach
The three diagrams above are all expressions of the way a development project moves 
through discrete phases. Normally, these phases encapsulate specific workflows such as 
‘requirements engineering’ and ‘design’. The UP takes a different approach, separating the 
lifecycle phases from workflow disciplines. There are four reasons for this:

1.	 A workflow may extend across several phases. Testing, for example, begins during 
the elaboration phase, following the V-Modell approach of agreeing a test-plan 
before software is produced, and continues until the end of acceptance testing in the 
transition phase and possibly beyond that into planning for the next iteration of the 
UP lifecycle.

2.	 Several different workflows or disciplines may be required to fulfil all of the 
requirements for completing the phase. For example, coding and testing are 
concurrent or interleaved tasks within the construction phase but require different 
disciplines.

3.	 The same (or very similar) tasks may need to be performed several times within a 
single iteration of a phase. This occurs during incremental development and rapid 
prototyping.

4.	 Where the complete process is repeated (for a second release, for example), the 
planning and justification tasks may take advantage of the outputs from the previous 
iteration.

The term ‘goal-driven’ describes the philosophy of the UP very well. Each phase ends 
with an identifiable moment in time at which a major state change occurs in a project. 
The inception phase ends when the client is able to authorise the supplier to proceed 
with the project. That is, the inception phase produces the evidence (including a scoping 



www.manaraa.com

20

CO3353 Software engineering project management

statement, budget and resource plan, schedule and analysis of risks) on which the client 
makes the decision to proceed.

This is a major milestone in the evolution of the project. The others are the stabilisation 
of project vision and architecture (the goals of the elaboration phase), readiness to 
roll-out the system developed in the construction phase and the final goal: product 
acceptance.

Figure 1.5 shows how the linear waterfall process can be broken down into the four 
UP phases, each with its goal expressed as a milestone. Inception leads to the ability to 
define system requirements as lifecycle objectives for this iteration. Elaboration results in 
a lifecycle architecture, or outline design. The end of the construction phase is marked by 
the availability of tested components, or an initial operating capacity. The cycle repeats 
if necessary once the product is released. Note how the milestones reduce the need for 
iteration within the lifecycle compared to Figure 1.4. Unresolved issues detected at those 
milestone points are either addressed before moving on to the next phase or deferred 
until the next UP iteration.

The use of the term ‘milestone’ refers back to the 18th century when roadside stones 
marked the distance to the destination. Milestones are not a measure of the distance 
already travelled; they tell you how much further you have to go. In a typical project 
where activities are planned backwards from an agreed endpoint, a milestone is not the 
date at which an agreed state is reached – it is the date at which the state was planned to 
be reached. There is a big difference.

System 
requirements

Analysis

Coding

Testing

PR Product release

Software 
requirements

Program 
design

Operations

LCO Lifecycle objectives

LCA Lifecycle architecture

IOC Initial operating capacity

Figure 1.5: Waterfall controlled by UP milestones.

The other difference between a goal-driven and an activity-driven or plan-driven project 
is that the focus is on achieving results, not on doing the work that should deliver those 
results. Planning determines the way ‘products’ are produced, not the way work is 
organised.



www.manaraa.com

21

Chapter 1: Software processes

Cornerstone 4

The purpose of a software project is to meet a client’s need by delivering a software system. That 

system decomposes into sub-systems and components, and each component requires a number 

of products to be built, tested and integrated. There are two approaches that a project manager can 

adopt – focus on the product, or focus on the work required to deliver that product.

Artefacts
An output from the project, or ‘product’, is known in the UP as an ‘artefact’. There are 
many definitions of artefact in different contexts, but the one we will focus on is that it is 
something that allows another, higher level, product to be constructed.

The artefacts that must be signed off to allow the ‘Lifecycle objectives’ milestone to be 
met at the end of the inception phase, for example, should be based on:

•	 project scope definition

•	 cost and schedule definitions

•	 risk identification

•	 project feasibility

•	 plans for the project (development) environment.

ELABORATION
• Use cases
• System architecture
• Supplementary 

speci�cation
• Software 

development plan
• Design plan
• Implementation 

plan
• Deployment plan

CONSTRUCTION
• Test plans
• Final designs
• Source code
• Other documents

INCEPTION
• Vision
• Acceptance criteria
• Candidate 

architecture
• Business case

TRANSITION
• Test results
• Release 

documentation

Figure 1.6: Relationships between phases, activities, milestones and artefacts.

Relationship between the UML and UP
There is a further difference between UP and the other methodologies described above 
and that is the adoption of a standard form of documentation – the ‘Unified Modeling 
Language’ (UML (™ Object Management Group, Inc.) (See: Booch et al., 2005).

The UML is the result of efforts to provide a standardised and easy-to-understand way 
of describing aspects of the structure, interactions and behaviour of a software system. 
It provides a diagrammatic way of modelling business processes, software requirements 
and architecture design in UP.



www.manaraa.com

22

CO3353 Software engineering project management

Table 1.1: Use of UML in the RUP.

Scope UML Purpose
Business 
modelling

Activity diagram Definition of system boundaries and the 

flow of control between the system and 

its external context and environment.

Class diagram Identification of key business 

stakeholders or entities.

Use case diagram Definition of high-level business 

requirements.

Data flow diagram Description of business processes to give 

a high-level definition of system scope.

Software 
requirements

Use case diagram A statement of a functional requirement 

(a specific task undertaken on behalf of a 

specific class of user).

Architectural 
design

Class diagram Definition of the classes of object 

required by the architectural design and 

the relationships between them.

Sequence diagram A more detailed description of the 

interactions between the actors and the 

objects or components within a system.

Component 
diagram

Definition of the interfaces (services) 

provided by a component of a system 

(especially a re-usable component) and 

the services that have to be provided by 

other components.

Activity or 
sequence diagram

Description of the behaviour of objects 

in response to a stimulus.

State diagram Description of the way objects change 

state in response to a stimulus.

Deployment 
diagram

Description of the deployment of 

software on hardware connected by 

middleware at run-time.

All of these models (and six other less-used diagrams) are described by Scott Ambler. (See: 
www.agilemodeling.com/essays/umlDiagrams.htm)

Agile methods
The principles of agile development are based in a large part on ‘lean thinking’, an 
approach to manufacturing derived from the work of W. Edwards Deming in the 1950s. 
A ‘lean’ approach has five underlying principles, which advocates of the agile approach 
should recognise. We do not need to spend time here discussing the ramifications of the 
2001 Agile Manifesto (see: http://agilemanifesto.org) except to characterise similarities 
and differences between agile and more traditional approaches based on these five 
principles.

1.	 Define the activities which add value to a product or service from the customer’s 
perspective and aim to eliminate wasteful activities that do not add value. The agile 
practitioner would see the value in a brief daily staff meeting looking forward and the 
waste in a weekly written progress report looking back.

2.	 Understand how value is delivered to the customer, as an end-to-end process. 
Identify aspects of value that do not survive that end-to-end process and parts 
of the process that do not add value. The agile practitioner would see little or no 

http://www.agilemodeling.com/essays/umlDiagrams.htm
http://agilemanifesto.org/


www.manaraa.com

23

Chapter 1: Software processes

value in undertaking a comprehensive requirements analysis in areas where those 
requirements can change as the system evolves.

3.	 Work out how to remove waste from the process by concentrating on improving 
the flow of value and challenging ways of working that reduce the flow. The agile 
practitioner would see the correlation between the size of a task (such as an increment 
in functionality to be delivered) and the risk that it will contain errors and other forms 
of wasted work.

4.	 Learn how to respond to the customer’s priorities rather than persisting with fixed 
ways of working. The agile practitioner would see the benefits of having a flexible and 
multi-skilled project team that can be configured to reduce the risk of bottlenecks 
when responding to the customer’s requests.

5.	 The goal of the lean approach in manufacturing is creation of a perfect value chain 
through principles of continuous improvement and total quality management. 
Cockburn points out, in discussion of the differences between the agile approach and 
that of ‘Capability Maturity Model Integration’ (CMMI) (™ Carnegie Mellon University), 
that ‘…CMMI places optimisation of the process at the final level, Level 5. Agile teams 
start optimising the process immediately.’

One major difference between agile and more conventional methods is in the approach 
to governance. Governance is about information flows and the way they facilitate 
decision-making. Ambler (see: www.ambysoft.com/unifiedprocess/agileUP.html) 
describes delivery of incremental releases over time as ‘serial in the large, iterative in the 
small’ where senior management see a linear sequence of milestones and team members 
see a highly iterative set of envision, explore and deploy activities.

Highsmith (2009) discusses the need to address the concerns of senior management 
who are looking at a portfolio of projects from a perspective of investment and risk, on 
the one hand, as well as project and iteration managers at the other. His enterprise-level 
governance model for agile organisations is essentially based on the UP lifecycle.

The project management perspective

Focus on business case and managing risk
Royce was primarily concerned with managing the technical aspects of software 
development and most waterfall activities take place during the construction phase of 
the UP lifecycle. The waterfall starts after the project has been commissioned and ends 
when the system becomes operational. It does not explicitly include activities such as 
justification of the project business case or system deployment, evolution and retirement. 
As a methodology, it does not make risk planning or resource-planning explicit. There is 
no activity to address the identification or evaluation of options from a risk perspective or 
for optimising the use of resources by allowing teams to work in parallel on independent 
sub-goals.

All of these non-technical concerns are, however, within the scope of the UP inception, 
elaboration and transition phases so that UP provides an overall business context within 
which the project team can select an appropriate methodology for the construction 
phase – whether that follows a linear or iterated approach, prototyping, re-use of software 
objects or ‘Commercial Off The Shelf’ (COTS) components, incremental development, 
incremental delivery or a partially automated process based on formal methods.

Some methodologies are more suited to large-scale, mission-critical, projects where risk 
management is a high priority. Some are appropriate when the client cannot articulate 
requirements for one reason or another or cannot visualise the end-product. Sometimes 
the most appropriate methodology depends on constraints associated with the context 
of the project, such as the need to migrate an operational system or a project that forms 
just part of an overall program of work.

http://www.ambysoft.com/unifiedprocess/agileUP.html


www.manaraa.com

24

CO3353 Software engineering project management

One other common form of process model must also be considered, and that is Boehm’s 
‘Spiral Model’ (Boehm, 1988), described in both recommended textbooks. Here, we need 
only consider the essential characteristics of the Spiral.

•	 Since the elements in the model are addressed sequentially, one journey round the 
axis of the Spiral can represent one iteration of a process model (for example, the UP 
model based on business case acceptance, development plan acceptance, system 
acceptance and deployment).

•	 At a lower level, the journey could represent one phase of such a model (for example, 
the elaboration phase, which involves capturing and modelling requirements, 
identifying risks and ways of managing them, developing an architectural framework, 
identifying resource requirements and producing the development plan).

•	 Because the elements of the Spiral are organised concentrically round that axis, the 
journey can be divided into standard sub-goals, such as Boehm’s objective-setting, risk 
assessment and reduction, development and validation followed by planning for the 
next iteration.

•	 Within a sub-goal, a standard set of activities may be required. Risk assessment and 
reduction typically requires analysis of the risks that were identified for this phase, 
prototyping or simulation to validate the analysis, benchmarking to provide a baseline 
for verification and so on.

Boehm’s development and validation phase can be implemented, like the UP construction 
phase, using any valid process model. When constructing a web-app based on the ‘Model, 
View, Controller’ (MVC) architecture, for example; business rules for the model can be 
verified by prototyping and implemented incrementally; the view can be built by re-using 
existing objects and application-specific sub-systems within; the controller could be 
implemented and integrated using a waterfall approach.

The framework is robust enough to be used in non-prescriptive ways. For example, 
Boehm says ‘prototype’ but does not define the nature of the prototype.

Best practices

Cornerstone 5

A best practice in common use is the breakdown structure. A Work Breakdown Structure, for example, 

decomposes the project into phases, decomposes phases into activities and activities into tasks and 

sub-tasks. You can describe dependencies from one to another through a Work Flow Diagram (for 

example, a GANTT chart; named after the person who developed it, Henry Gantt). Similarly, you can 

represent the relationships between artefacts from a project in a Product Flow Diagram, which then 

defines the order in which they must be completed. You can also use breakdown structures to ensure 

that an analysis of factors such as risks or competences is comprehensive.

As described by Sommerville, UP embodies three views on the software engineering 
process.

•	 A dynamic model of the evolution of a project over time.

•	 A static description of the activities that form the components of that process 
model.

•	 A generalised description of the types of good practice which are appropriate for 
execution of those activities.

Best practices include suggestions for workflows and the document artefacts that will 
normally be needed, and their purpose/readership, content and structure.



www.manaraa.com

25

Chapter 1: Software processes

Table 1.2: Best practice workflows and artefacts.

Workflow Scope UML artefacts
Business 
modelling

Business processes modelled in a 
form understood by both business 
and software analysts

Business use case descriptions 

organised into the business object 

model.

Requirements Functional requirements Use case descriptions, collectively the 

use case model.

Non-functional constraints –  
trade-offs and decisions

Supplementary specifications.

Analysis and 
design (the ‘4+1’ 
views, see Figure 
5.1) 

Static structure (logical view) Object model (class diagram).

Dynamic behaviour (process view) Object model translated into 

sequence diagram.

Objects with complex state-change 

behaviour may require a state 

diagram.

Physical organisation of components 
(implementation view, optional 
physical views)

Object model translated into 

component diagram.

Optional deployment diagram 

showing how components are 

deployed on distributed platform.

Implementation Building components and 
sub-systems

The component model is 

implemented in code in agreed 

increments.

Testing Component testing Components are verified and 

validated against the relevant use 

case(s).

System testing The system produced by the 

implementation workflow is validated 

against the use case model and SRS.

Deployment Acceptance testing

Roll-out

A product release is created, 

distributed and installed in 

accordance with the deployment 

model.

Support Configuration and change management

Project management

Development environment

There are other sources of good practices, such as the AUP, PMI’s ‘Project Management 
Body of Knowledge’ (PMBOK®; PMI, 2013). The freely-available ‘ProjectInABox’ provides 
document templates suited for use within a variety of project management approaches 
(see: www.projectinabox.org.uk).

Other practices include generic approaches to standard activities like engaging with users 
to elicit requirements and how to conduct milestone reviews.

http://www.projectinabox.org.uk/


www.manaraa.com

26

CO3353 Software engineering project management

Reminder of learning outcomes
Having completed this chapter, and the Essential reading and activities, you should be 
able to:

•	 understand the concept of a process model as a way of describing a software 
development project and differentiate between common approaches such as 
waterfall, iterative and agile

•	 identify the key artefacts produced during an iteration of the software development 
process

•	 understand the role of the project manager in delivering those artefacts

•	 understand the ways in which the development process can affect quality.

Test your knowledge and understanding: defining appropriate models
We have discussed several key process models, but the Essential reading textbooks 
describe others. There is no ‘one size fits all’ process model and it is important for you to 
show that you can identify the strengths and weaknesses of the most-used models in a 
variety of contexts. 

6.	 Consider the distinctive features of these key process models and the types of project 
that they are recommended for. For example, Pressman suggests that the waterfall 
approach is applicable when requirements are pre-defined and not going to change 
and the work is essentially linear. This may be the case with an embedded system or 
device driver.

7.	 Record your findings in a Decision Tree (a flowchart consisting of Yes/No branches) 
to select an appropriate process model based on the requirements of a project. For 
example, a decision tree for selecting a suitable pet might include the following:

Pet will have 
to live in 

urban area

Pet will be left
alone during

the day

Pet will have 
to interact 

with children

HORSE

N

N

N

Y

Y

Y
DOG

FISH

CAT

8.	 You can also summarise your logic in a table with the key process models in the left 
hand column and the types of project on the right, building on the following:

Process model Project type

Waterfall Device driver (requirements are known)

Embedded system (development is linear)



www.manaraa.com

27

Chapter 2: Requirements engineering

Chapter 2: Requirements engineering

Learning outcomes
By the end of this chapter, and having completed the Essential reading and activities, you 
should be able to:

•	 describe the differences between elicitation, specification, validation and 
documentation of requirements

•	 understand the differences between system and user requirements and between 
functional and non-functional requirements

•	 use natural language and graphical representations of requirements within a 
requirements document

•	 produce a system model based on requirements.

Essential reading 
Sommerville Pressman
Chapter 4: Requirements engineering Chapter 5: Understanding 

requirements

References cited
Grady, R. and D. Caswell Software metrics: establishing a company-wide program. (Upper 

Saddle River, NJ: Prentice Hall, 1987) [ISBN 9780138218447]. 

Overview
The process of identifying and recording requirements is explained in depth in both 
recommended textbooks. The importance of the process is that it yields an understanding 
of the scope of the project (the business needs to be met), the outputs from the project 
(artefacts) and the way of assessing the outcomes (benefits) that are achieved. It normally 
forms the contractual agreement between supplier and customer.

Cornerstone 6

A specification document must comply with the ‘four Cs’:

Clear: No ambiguities or confusing cross references to other documents.

Concise: No unnecessary detail, repetition or confusing cross-references to other documents.

Correct: Attributed, with no conjecture, paraphrasing or unsubstantiated opinion.

Complete: Verified as part of the V & V process.

The first step in scoping many projects is a feasibility study and this is very often a 
technical rather than a commercial decision. Examples include:

1.	 A technical study to see if a legacy database contains accurate enough data to allow 
an enhancement.

2.	 A pilot to evaluate the feasibility of reverse-engineering an existing process.

3.	 A trial to see how many extra sales agents the current network will support.

4.	 An evaluation of three vendors’ COTS software.

5.	 A mock-up interface to see whether staff would feel comfortable using the proposed 
new Human Resource system.

6.	 A field trial to measure a round-trip time using a cloud architecture.



www.manaraa.com

28

CO3353 Software engineering project management

However, stakeholders should also be concerned with non-technical issues that affect 
a project’s feasibility. According to Figure 1.6 in the previous chapter, the purpose of 
the inception phase of a UP project is to produce a set of artefacts that allow the two 
prime project stakeholder groups, the customer(s) and their supplier(s) to determine 
the feasibility of a new project (or new iteration of an existing project). The result will 
normally be expressed in a business case. It is vital that the business case is kept up to 
date throughout the life of the project, as a way of evaluating the ongoing viability of the 
project in response to changes in the status of risks.

Figure 1.6 also contains a much longer list of artefacts generated within the elaboration 
phase. One of the consequences of splitting the ‘front-end ‘ of the project into 
inception and elaboration phases is that it avoids the need to create a detailed software 
development plan and user requirements statement before finding that the project 
cannot be cost-justified commercially. In an iterative, incremental or agile environment, 
some requirements may remain undiscovered until the construction phase.

Cornerstone 7

The project team invariably focuses on the outputs it is to create, while the client is concerned with 

the outcomes of using those outputs. ‘Outcome-based specifications’ address the client’s needs and 

do not prescribe how they are to be met.

The output-based specification for a new sales-support system might include ‘produce a 
weekly printed report from the database enquiries table summarising the status of sales 
enquiries received in the last week grouped by sales territory’. The rationale for this kind 
of statement might be that managers need information in that format in preparation for 
the weekly sales-team video-conference. A more likely reason, of course, is ‘we’ve always 
done it this way’. The outcome-based equivalent would simply be: ‘sales managers require 
up-to-date information on the status of enquiries in each sales territory’. This would allow 
the innovative supplier to suggest the use of an on-screen ‘dashboard’. By putting the 
dashboard on the intranet, where it can be accessed by the sales team as a whole, time 
can be saved each week in the sales-team video-conferences.

The decision to proceed with a project is likely to be based on the answers to the 
following questions:

Questions the customer should be asking
PROJECT OUTCOMES:

Does the supplier know what we are trying to achieve?

PROJECT OUTPUTS:

Can we agree what the key deliverables and their acceptance process(es) will 
be?

BUSINESS JUSTIFICATION:

Do the potential benefits outweigh the costs and risk of taking the project 
forward?

Short/Medium/Long-term projections: WILL THIS STILL BE THE RIGHT 
DECISION IN ONE/THREE/10 YEARS’ TIME?



www.manaraa.com

29

Chapter 2: Requirements engineering

Questions the supplier should be asking

OUTCOMES:

Has the customer explained why the project is important to them?

PROJECT DOMAIN:

Are we analysing the right problem? Are we listening to the right 
stakeholders?

APPROACH:

Can we agree an overall project architecture? Can we do the job?

POTENTIAL THREATS:

Do we understand the development process well enough to be able to 
identify and evaluate the key risks?

POTENTIAL BENEFITS:

Can we evaluate the potential business benefits (profit, avoiding disbanding 
the team, acquiring a new customer, positioning ourselves in a new market or 
developing new skills)?

Short/Medium/Long-term projections:  WILL THIS STILL BE THE RIGHT 
DECISION IN ONE/THREE/10 YEARS’ TIME?

Depending on the scale of the project, some or all of the following are likely to be used to 
help evaluate the answers:

Customer business information sources

•	 Business vision – Corporate goals.

•	 Business rules – Policies and constraints.

•	 Business case – Source of information about corporate values (intangible).

Project definition sources

•	 definition of scope

•	 user requirements, possibly supported by user profiles and key high-level use case 
definitions

•	 supplementary, non-functional, requirements

•	 interfaces: users, hardware, software, communications

•	 an inventory of risks with strategies for their avoidance or reduction

•	 project approach

•	 project architecture

•	 high-level project plan

•	 high-level resource plan

•	 project evolution.

Validation

Validating requirements locally with users – through mock-ups and scenario-based 
models – will reduce the risk of starting development on the basis of an incomplete or 
inaccurate specification of the static elements of the system. For example, one of the 
first things a web-designer is likely to ask a new client for is a list of examples of existing 
websites that embody the expected visual styling, tone of language, user functionality 
and overall business purpose.



www.manaraa.com

30

CO3353 Software engineering project management

Partially-functional prototypes provide another tool for eliciting feedback from users as 
the detailed design evolves. This has become increasingly valuable as developers gain 
access to re-usable library objects, especially user-interface objects, and acquire skills in 
using techniques from the field of usability.

Software Requirements Specifications
Descriptions of ‘Software Requirements Specification’ (SRS) documents can be found in 
Sommerville, Karl Viegers (see: www.processimpact.com/goodies.shtml) (the RUP-based 
origin of the outline referenced in Pressman) and, of course, the UP itself. These are very 
similar in structure, if not identical.

The content of each section should be clear from the following outline:

Introduction Document purpose and project scope

Project overview Business context for the proposed system

System features (from user 
requirements)

Functional requirements

External interfaces Operational context

Supplementary requirements Non-functional requirements

The lean thinking of agile methodologies such as Ambler’s AUP emphasises reusing 
relevant source documents rather than rewriting or editing them. By the time the 
construction phase has started, the agile SRS could include UP artefacts containing 
documentation of business rules, domain model, organisation model, project glossary, 
analysis of automation opportunities, a business process model, technical requirements, 
use case model, a user interface model and definitions of acceptance tests. The exact mix 
will vary from project to project.

The SRS is not complete until the end of the high-level analysis phase, by which time the 
use cases or user requirements statements have been transformed into concrete system 
features.

Cornerstone 8

Functional requirements describe the way the system behaves.

Non-functional requirements describe the context within which that system behaviour is delivered.

User requirements are the functional and non-functional requirements that describe the business 

goals for the system.

System requirements are the functional and non-functional requirements that have to be met in 

order to achieve the business goals for the system.

http://www.processimpact.com/goodies.shtml


www.manaraa.com

31

Chapter 2: Requirements engineering

Key concepts: gathering, analysing and formalising requirements

Elicitation Validation

Analysis Speci�cation

Business 
requirements 
specification

Feasibility 
studyUser 

requirements 
discovery

User 
requirement 

analysis

Requirement 
prioritisation

Business 
requirements

User
requirements 
specification

Verification
e.g. 

Prototyping

User  requirements 
or use cases

System 
requirements 

discovery

System 
requirement 

analysis

Initial system 
architecture

System 
model

Validation
e.g. 

Reviews

System 
requirements

Requirement 
prioritisation

Business case

Test -case 
generation

System 
architecture

Figure 2.1: Requirements engineering, after Sommerville.

Figure 2.1 captures the logic of two diagrams from Sommerville, integrating details of 
elicitation and analysis activities within the process of defining an SRS and business, 
user and system requirements. The Spiral approach highlights the order in which these 
different specifications are normally produced:

•	 Business requirements define the scope of the project.

•	 User requirements define the system to be produced in sufficient detail to be able to 
plan the project.

•	 System requirements define the system in sufficient detail to allow it to be 
implemented.

The Sommerville and Pressman textbooks both describe the process of requirements 
engineering, including the various forms that a completed set of requirements can take 
– unstructured or structured narrative (natural language), high-level mathematical or 
logical expressions or graphical representations such as the UML. The process begins with 
the identification of the customer’s requirements and there are various ways in which 
those requirements can be captured (elicited or discovered) and analysed.

The primary aims of analysis are to ensure the accuracy and completeness of the 
understanding of the customer’s needs, which may influence the scope of the project. 
Prioritisation of the specific requirements allows functionality to be allocated to the first 
or subsequent iterations of the project.

The project management perspective

Modelling the business requirement
PMBOK® identifies seven reasons why a development project might be initiated. Since 
PMBOK® is not specifically concerned with software engineering, we have modified the 
list to reflect the types of project that you are likely to encounter:



www.manaraa.com

32

CO3353 Software engineering project management

•	 responding to market demand for a feature, product or service

•	 addressing internal needs or opportunities within the organisation

•	 servicing a customer request for a bespoke system

•	 technology-driven need to update an existing system

•	 constraints such as legal changes

•	 improving the way a system operates, such as reducing environmental impact

•	 infrastructure development (originally categorised as ‘social need’, such as providing 
drinking water).

Some projects will have clear monetary benefit (such as a successful upgrade to an existing 
system) while others may have less tangible outcomes such as improving customer 
satisfaction. In all cases, the decision to proceed is based on acceptance of the business case 
which gathers the evidence that delivering the project will result in the expected benefits. It 
will have to be revisited at various times during the project.

The starting point is normally ‘the cost of doing nothing’. In other words, the factors in 
the decision are relative to that baseline, but are not absolute. This has implications when 
considering the acceptability of the system (discussed below), the trade-off between 
incompatible requirements, such as the time it will take to deliver something that ‘works’ 
and something that is robust.

It is the project manager’s responsibility to provide accurate and complete evidence for 
the business case. As the project evolves, the business case will evolve to include cost and 
schedule estimates, which we will address in the next chapter of the subject guide. It will 
also include documentation of the requirements that have been identified and the response 
in terms of specific features, since these are the basis on which the costs are calculated. The 
project manager’s main concerns are, therefore, whether the requirement is:

Understandable?

Complete within a well-defined context? (For example, if 

there are multiple user-types, the requirement may only 

apply to one user-type.)

Stated in a clear, unambiguous way for the intended 

reader?

Defined in a form that is consistent with the body of 

requirements?

A description of a required outcome rather than a way 

of achieving that outcome?

Attributable?

Current (relevant to the current situation, not something 

learned from an out-of-date customer document)?

Implementable?

Necessary (‘need to have’ or ‘nice to have’)?

Realistic?

Measurable (non-functional requirements)?

Testable?

A prerequisite for another requirement?

Dependent on the implementation of other 

requirement(s)?

This checklist is an example of a breakdown structure and every project manager should 
have such a framework to ensure that their analysis is complete.



www.manaraa.com

33

Chapter 2: Requirements engineering

FURPS – Functionality, Usability, Reliability, Performance, Supportability
‘Functionality, Usability, Reliability, Performance, Supportability’ (FURPS) (Grady and 
Caswell, 1987), developed at Hewlett Packard, is based in part on the thinking of Joseph 
M. Juran (see: www.juran.com). It defines the relationship between the functional and 
non-functional properties of a system in terms of its ‘-ilities’. ‘An “ility” is a characteristic 
or quality of a system that applies across a set of functional or system requirements’ 
(see: www.softwarearchitecturenotes.com/architectureRequirements.html). In other 
words, a given area of functionality must be implemented in accordance with a given 
set of non-functional requirements. Where there is a tension between two areas, it is 
the project manager’s responsibility to establish what the customer’s priorities are and 
what constitutes an acceptable balance between functionality, usability, reliability, 
performance and supportability. The following list of ilities may look like a simple 
checklist based on those categories, but it provides the customer with a mechanism for 
quantifying the importance of the various non-functional requirements, using a simple 
weighting function (a scale of 1 to 5).

FURPS+ (the ‘+’ signifies that extra attributes have been added since 1987) is similar to 
ISO 9126 which divides Supportability into Maintainability and Portability. In either 
form, it is an important part of the discussion of measuring progress and also the related 
issue of the quality of that progress.

Functionality Feature set, capabilities, generality, security.

Usability Human factors, aesthetics, consistency, documentation.

Reliability Frequency/severity of errors, recoverability, predictability, 

accuracy, mean time between failures.

Performance Speed, efficiency, resource consumption, throughput, 

response time.

Supportability Testability, extensibility, adaptability, maintainability, 

compatibility, serviceability, installability, localisability.

The relationship between requirements and system acceptability
A successful software engineering project is critically dependent on the accuracy and 
thoroughness of the requirements engineering process in order to:

•	 Determine the customer’s functional and non-functional requirements.

•	 Balance those requirements to deliver the functionality, reliability, performance and 
supportability requested to an acceptable extent.

•	 Identify constraints that affect the project’s duration, cost, choice of methodologies 
and standards.

Change
Evolution of a system is the subject of Chapter 9 of the subject guide. Here, we only need 
to say that the process of specifying and implementing a new version of a system should 
follow the process described above for the initial system. That is:

1.	 Changing business requirements drives the process through the Spiral model 
shown above – namely, high-level user requirements followed by revised system 
specification.

2.	 The decision to proceed is based on a business case.

3.	 The system is achievable in terms of balancing requirements.

http://www.juran.com/
http://www.softwarearchitecturenotes.com/architectureRequirements.html


www.manaraa.com

34

CO3353 Software engineering project management

Implications for project planning
Project planning, at a detailed level, is discussed in Chapter 6 of the subject guide. However, 
the requirements capture process described in the previous section is critical to success 
in planning what the development team will do as well as for providing evidence as to 
whether the project should proceed or not. The decisions that need to be made are:

1.	 Who will do the work?

2.	 What are the implications of the chosen project architecture?

3.	 How can the major risks be avoided or mitigated?

4.	 How can the work be broken down to make the project more controllable?

5.	 What resources need to be acquired?

These decisions are typically taken in parallel with and throughout the process of 
translating user requirements into system requirements.

Reminder of learning outcomes
Having completed this chapter, and the Essential reading and activities, you should be 
able to:

•	 describe the differences between elicitation, specification, validation and 
documentation of requirements

•	 understand the differences between system and user requirements and between 
functional and non-functional requirements

•	 use natural language and graphical representations of requirements within a 
requirements document

•	 produce a system model based on requirements.

Test your knowledge and understanding: gathering evidence
Sommerville proposes a template for an SRS and it is important that you understand the 
likely sources of the evidence that you use to develop those requirements and how the 
project documentation evolves.

Business 
model

Use cases
Business 
glossary

Business 
vision

Business 
rules

Project 
architecture

Figure 2.2: Extract from a Product Flow Diagram.

1.	 Review the content of this chapter, and in particular the outline SRS. 

2.	 Now, construct a ‘Product Flow Diagram’ (PFD), following the example in Figure 2.2 to 
explain the artefacts needed to produce an SRS. 

3.	 Finally, divide the artefacts into those produced before the end of the inception phase 
and those produced during the elaboration phase.



www.manaraa.com

35

Chapter 3: Planning, cost and schedule estimation

Chapter 3: Planning, cost and schedule 		
estimation

Learning outcomes
By the end of this chapter, and having completed the Essential  reading and activities, you 
should be able to:

•	 describe the structure of a project schedule

•	 apply resources to execute a project plan

•	 understand the constraints on the accuracy of resourcing and budgeting.

Essential reading 
Sommerville Pressman

Chapter 23: Project 
planning

Chapter 26: Estimation for software 
projects

Chapter 27: Project scheduling

Further reading
Fenton, N. and S.L. Phleeger Software metrics: a rigorous and practical approach. (Boston: 

PWS Publishing, 1998) second edition [ISBN 9780534954253].

References cited
Hsu, C.C. and B.A. Sandford  ‘The Delphi technique: making sense of consensus’, Practical 

Assessment, Research & Evaluation 12(10) 2007, pp.1–7; http://pareonline.net/pdf/
v12n10.pdf

Overview
Successful execution of a software project is dependent on three planning activities:

1.	 Budget/resource-planning.

2.	 Scheduling.

3.	 Monitoring and progress management.

In 1995, the Standish Group estimated that software projects were costing US companies 
and government agencies $250bn/yr (see: www.spinroot.com/spin/Doc/course/Standish_
Survey.htm). A third of this money ($81bn) would be on projects that were cancelled 
before they saw the light of day. A third of the balance ($59bn) would go on finishing 
software projects that would be completed, but exceed their original time estimates.

http://pareonline.net/pdf/v12n10.pdf
http://pareonline.net/pdf/v12n10.pdf
http://www.spinroot.com/spin/Doc/course/Standish_Survey.htm
http://www.spinroot.com/spin/Doc/course/Standish_Survey.htm


www.manaraa.com

36

CO3353 Software engineering project management

250

200

150

100

50

0

Project over-run:  $59bn

Project cancellation:  $81bn

Final value: 44% of expectation

Planned and 
�nished,  $110bn 

Overrun, 
$59bn 

Cancelled, 
$81bn   

Figure 3.1: Project failures, after Standish.

The research has subsequently been repeated on several occasions and, while the 
numbers may vary year-on-year, there is no evidence of any real improvement in the 
number of projects that are completed on-time and on-budget, with all features and 
functions as initially specified or a reduction in the number of ‘impaired’ projects that are 
terminated prematurely.

The remainder, of course, are the projects that are completed and operational but over 
budget, over the time estimate, and offer fewer features and functions than originally 
specified.

Plan-driven development and agile development
The essence of a plan-driven approach to a project is that the customer and developer 
commit to a detailed project plan (specifying and scheduling release of a series of 
products) before entering the construction phase. The factor that remains (relatively) 
constant is the functionality and performance of the product. Deviation from plan results 
in a product going out of tolerance (time, cost or quality).

An agile development team does not expect to be constrained by a detailed plan 
(although high-level planning may be required by the principle of ‘serial in the large, 
iterative in the small’) since the ‘constant’ is not the product but the timing of the 
iteration cycle. Functionality is dynamically prioritised and allocated to a planned 
release.

The two approaches are simply different ways of achieving the same goal: fulfilment of 
the customer’s strategic criteria identified by Price Waterhouse Cooper (PWC). Not only 
time and budget but stakeholder satisfaction, benefit realisation, quality and return on 
investment. Sommerville makes the point that many projects will incorporate elements of 
both approaches and lists a series of questions that affect the way the project is managed. 
The implications of these technical, organisational and human issues can be represented 
as follows:



www.manaraa.com

37

Chapter 3: Planning, cost and schedule estimation

Expertise of

team

members

Complexity

of problem

Extended 

lifetime

support

Likelihood

of rapid

feedback

Size and 

location

of team

Ability to work

flexibly and

informally

Rigidity of 

regulatory

and other

constraints

Collaborative

development

tools

MORE

PLAN-

BASED

MORE

AGILE-

BASED

Figure 3.2: Constraints on development strategy.

Key concepts: time, money and quality

Scheduling: time
Scheduling is essentially the translation of the process model into a network of activities. 
Four factors determine how the network is constructed:

1.	 The way the project decomposes into tasks (work breakdown structure).

2.	 The availability of the resources needed to execute the tasks.

3.	 The estimated time to completion for each task.

4.	 The interdependencies that dictate prerequisites for starting a task.

Three additional factors affect the overall duration of the project.

5.	 Reworking caused by design/software errors.

6.	 Reworking caused by changes in customer requirements.

7.	 Delays caused by risks that materialise as issues.

The most common expression of the network is the bar chart or GANTT chart. This 
consists of rows reflecting the hierarchical organisation of tasks in the ‘Work Breakdown 
Structure’ (WBS) with time as the horizontal axis. Each bar (representing the expected 
start and finish dates) has an implied or explicit relationship with others – its predecessors 
and successors. Overlap of parts of two bars means they are concurrent. Most project 
planning software (such as Microsoft Project) maps ‘work to task’ as well as ‘task to time’. 
Resources can be allocated to tasks and as the project unfolds, the tool can track the rate 
of progress and consumption of resource.



www.manaraa.com

38

CO3353 Software engineering project management

The project plan for the process depicted in Figure 1.5 in Chapter 1 of the subject guide 
could be depicted as follows:

Figure 3.3: ‘Waterfall’ GANTT chart. Also available on the VLE.

This GANTT chart assigns a bar (and therefore resource) to reworking that arises from 
unsuccessful milestone reviews. This means that a known level of resources have been 
scheduled to reworking. The bar appears to the left (that is, before, in time) of the 
milestone, not after it as might be assumed. The reason is that the milestone has not been 
passed if reworking is taking place.

The WBS does not in itself carry any timing or inter-dependency information. One good 
way of informing the design of the GANTT chart is to design a Product Flow Diagram 
(PFD) linking the outputs of each task. It is actually easier to develop an accurate WBS 
from the PFD than it is to do the design the other way round.

Estimating: cost
There are five components of a costing calculation for software development:

1.	 Scale of problem

2.	 Efficiency of staff

3.	 Unit cost of staff

4.	 Project-specific equipment costs (for example, servers, licenses)

5.	 Overheads associated with staff time (travel, accommodation, utility equipment such 
as phones, laptops).

Estimating the work required to deliver the end result is the one difficult part of this 
equation, especially in the early days of the inception phase. Whether the unit of work 
is ‘Lines Of Code’ (LOC) or methods of a class, efficiency is an expression of the number 
of those units that a member of staff can produce, error-free, in a working day. This is 
relatively straightforward in the case of a stable, effective development team working on 
a familiar task and likely to be much more accurate than the estimate of the number of 
units of work required.

There are three basic methods for estimating the scale of the problem:

1.	 Guesses (estimates made by experienced practitioners)

One way of improving the accuracy of expert estimates is to elicit smallest (s), largest 
(l) and most likely (m) values, where the expected value (E) is given by E = (s+l+4m)/6 
assuming a beta distribution.



www.manaraa.com

39

Chapter 3: Planning, cost and schedule estimation

2.	 Revisions of previous guesses (based on the actual effort required to deliver similar 
projects)

Where a pool of expertise is available, a ‘Delphic consensus’ (also known as the ‘Delphi 
technique’) can be used. Even an average is more robust than a single opinion.

3.	 Statistical manipulation of guesses, where the guesses become parameters of a 
calculation

There are three significant approaches to statistical estimation of effort described in 
the recommended textbooks. These are:

1.	 Constructive Cost Model (COCOMO II)

2.	 Function Point Analysis (FPA)

3.	 Object Oriented (OO) approach.

Sommerville identifies several reasons why the result may not be used as the final 
price:

Exchanging profit for opportunity such as:

•• entry into new market or working with new client

•• retention of rights to use code

•• gaining experience, skills or specialist staff.

Exchanging profit later for cash flow now in order to pay the bills (mostly salaries). 
Remember that this is itself a risky option, profit or loss being ‘…the very small 
difference between two very large numbers’.

Performance: quality
Management of the delivery of quality is addressed in Chapter 8. However, the project 
plan itself must reflect the approach to quality. It is generally assumed that the goal of 
a project sponsor and, therefore, his or her designated project manager is to deliver ‘on 
time’ and ‘on budget’, but that is only part of the story. A Price Waterhouse Cooper survey 
(2007) (see: www.pwcprojects.co/Documentos/BRO Boosting Business Performance DC-
07-1104-A v8[1].pdf ) found that only 19 per cent of managers prioritised on-time delivery 
and a further 18 per cent budget as their primary criterion for success.

Nearly two-thirds, therefore, emphasised more strategic criteria such as satisfaction of 
their stakeholders (20 per cent), delivery of benefits (17 per cent), quality of the result (15 
per cent) and return on investment (9 per cent). Part of the role of the project manager is 
to establish methods of monitoring progress towards such strategic objectives and this 
will affect the selection of the most appropriate SE methodologies for a particular project. 
The solution (and the way of managing its implementation) depends on the nature of the 
problem.

Cornerstone 9

ISO/IEC 12207 defines validation as confirmation that the final, as-built, system fulfils its specific 

intended use, that it is ‘fit for purpose’. Verification confirms that the output of each activity (such 

as requirements capture, design, code, integration or documentation) fulfils the requirements or 

conditions imposed by the preceding activities.

This is often expressed in terms of validating that the ‘right thing’ is being built and verifying that the 

thing is being ‘built right’.

http://www.pwcprojects.co/Documentos/BRO%20Boosting%20Business%20Performance%20DC-07-1104-A%20v8%5B1%5D.pdf
http://www.pwcprojects.co/Documentos/BRO%20Boosting%20Business%20Performance%20DC-07-1104-A%20v8%5B1%5D.pdf


www.manaraa.com

40

CO3353 Software engineering project management

The project management perspective
There are several project management methodologies that can be applied to software 
projects including ‘PRojects IN Controlled Environments’ (PRINCE2) (™ HM Government), 
the Project Management Institute’s PMBOK® mentioned earlier and ITIL (‘Information 
Technology Infrastructure Library’) (™ HM Government).

We discuss the principles that underpin these methodologies throughout this subject 
guide. For example, PRINCE2 takes a product-centric view of a project, contains 
mechanisms for controlling the transition from phase to phase and divides work into 
work packages, each typically responsible for delivery of one major project artefact.

We will not examine your knowledge of the terminology or processes of a specific 
methodology, but students are encouraged to investigate one or more of the major 
ones. For example, there is a comprehensive web-based PRINCE2 reference resource 
available (see: www.crazycolour.co.uk/prince2/?title=Main_Page). A freestanding tool has 
been produced called ‘Project In a Box’ that includes a free downloadable ‘community 
edition’ (see: www.projectinabox.org.uk). This also contains support for ITIL and other 
methodologies.

Product-based and activity-based planning
Product-based planning is one of our cornerstones. It allows resources to be scheduled 
according to the role each resource plays in constructing the product and it allows 
progress to be monitored in terms of delivery of products rather than completion of 
tasks that contribute to those products. For example, three teams working in parallel 
are planned to produce components (user interface, the database transactions and 
the implementation of business rules) that will result in achievement of a major sub-
system.

The modified PFD (Figure 3.4) shows the status of the sub-system or component. 
Design is complete, work has started on the business rules module and the other two 
modules are finished but not tested. Knowing that the user interface design team has 
completed their task tells you nothing about the status of the sub-system. You can only 
make a meaningful statement about the status of the higher-level product when all 
three components are ready for integration, which is when it reaches its first milestone 
(prerequisites are in place).

Untested 
component

Component

Untested 
interface

Interface

Untested 
database

Database

Untested 
rules

Rules

Component 
design

Milestone

Figure 3.4: PFD showing product status. 

http://www.crazycolour.co.uk/prince2/%3Ftitle%3DMain_Page
http://www.projectinabox.org.uk


www.manaraa.com

41

Chapter 3: Planning, cost and schedule estimation

Timing
The tracking GANTT (Figure 3.5) shows the activity-based view of the project on 26 
September when the database work finishes and is ready for testing, three days late. The 
user-interface task is on schedule and 60 per cent through the unit testing sub-task.

But the third activity, the business rules work, is only 80 per cent complete. It has a 
scheduled nine days of work left before the tested component can be released. That 
would imply that the first milestone on 28 September, already revised to 3 October due to 
delay in the database task, will probably slip to 8 October. The finished artefact would be 
more than a week late.

Figure 3.5: Tracking GANTT. Also available on the VLE.

Monitoring
Monitoring the plan requires an objective assessment of the extent to which a product 
has been achieved (often, internal milestones or ‘checkpoints’ are used for this) rather 
than a statement of the effort that has been used en route to that checkpoint. Consider 
the following:

‘The GUI prototype has been evaluated by end-users and our 
business rules have been accepted by the client, so we are ready to 
begin the final iteration of the construction on time.’

This means that relevant checkpoints have been identified and the 
purpose of the milestone is understood.

‘We were late producing the specification but have caught up by 
leaving some of the lower priority things till the next release.’

This means that the specification (for the current release) has not 
been approved. Therefore the milestone to start development has not 
been achieved. An exception plan (see Chapter 6 of the subject guide) 
is needed.

‘We’re three months into a twelve month project with a fixed 
team, so we must be 25 per cent finished by now.’

This is frequently an indication that there are no milestones, no 
resource plan and therefore no way of managing the transitions 
between activities.



www.manaraa.com

42

CO3353 Software engineering project management

Delegated responsibility and exception-based reporting
The example above does not consider how an ‘early-warning’ system can be put in place. 
The PRINCE2 approach is to delegate responsibility for monitoring progress on a product 
to the team actually doing the work. During planning, agreement is reached on the 
resources to be made available, the time available for doing the work and the quality of 
the end results – within specified tolerances. From that point on, the project manager 
only needs to know two things:

The status of the work (hopefully complete) when the milestone date is reached.

Early warning that the product is going out of tolerance for time, cost or quality.

The database task is currently three days, or 15 per cent, late. This is probably within 
tolerance. The business rules team, however, should have been aware by the end of, say, 
the third week of their design task, that they were at risk of over-running (and probably 
running out of resources). This should have raised an exception condition for the sub-
system.

That is the limit of delegated responsibility. The project manager is then able to take 
action to rectify or normalise the situation, which would depend on the circumstances of 
the rest of the project but could be one of the following:

•	 Revise the delivery date for the sub-system.

•	 Try to honour the original schedule by assigning extra resource to the business rules 
team.

•	 Redefine the specification for the sub-system to reduce the work needed.

Once again, the project manager is in place to consider and strike a balance between 
time, cost and quality.

Accuracy of projections
Boehm (1995) observed a large variation (a factor of 4) in the initial estimated cost of a 
wide range of projects. One of the goals of a project manager is to reduce that variation, if 
not immediately then at least before the end of the elaboration phase of the project.  
A series of quality gates can be implemented, at which the uncertainty should be reduced 
significantly. For example, the completion of the initial requirements capture could be the 
first gate and aim to halve the uncertainty. This is illustrated in Figure 3.6 below, and forms 
a major part of risk management.

x

2x

4x

x/4

x/2

G0 G1 G2 G3 G4

Figure 3.6: Controlling estimation error.



www.manaraa.com

43

Chapter 3: Planning, cost and schedule estimation

Reminder of learning outcomes
Having completed this chapter, and the Essential reading and activities, you should be 
able to:

•	 describe the structure of a project schedule

•	 apply resources to execute a project plan

•	 understand the constraints on the accuracy of resourcing and budgeting.

Test your knowledge and understanding: The PRINCE2 approach
Several formal project management methodologies have been introduced in this chapter. 
These are mostly intended for use in large projects but we have focused on PRINCE2 
because it is scalable to large and small projects and because of the availability of 
resources such as CC Training and ProjectInABox. It is important that you can demonstrate 
an understanding of this scalability.

PRINCE2 is not covered in either Pressman or Sommerville, but free web-based resources 
are available. We have identified several in this chapter (under the heading ‘Project 
management perspective’) and introduce exception-based reporting (see section 
‘Delegated responsibility and exception-based reporting’ ). A more detailed explanation 
of the methodology is presented in Chapter 6 (Figure 6.2).

There are several other key concepts such as dividing a project into stages with detailed 
Stage Plans and delegated responsibility through the use of Work Packages (discrete well-
defined products).

Read about the principles of the methodology from a source such as CC Training (www.
crazycolour.com/prince2/?title=Main_Page) and consider how it corresponds to the 
process models you have been studying. As you explore this, draw up two lists from the 
material you read – one of concepts that are familiar and one of concepts that are less 
familiar. This second list is likely to consist of some of the formal methods used in larger 
projects, such as managing stage boundaries and closing a project. 

Summary of the inception phase
•	 SE processes include addressing capture and specification of the system needs 

(requirements engineering), translation of those needs into an executable software 
system (design and implementation) and checking that the result addresses the 
specification and meets the real needs of the users (validation).

•	 The way these processes interact can be represented in the form of process models 
and the RUP is a generic modelling tool.

•	 Requirements for systems evolve and the SE processes must be able to cope with 
change.

•	 Agile methods identify and respond to requirements incrementally, using short 
development cycles. XP uses test driven development and involves the customer as 
part of the team. Scrum provides a priority-driven project management framework.

•	 Agile is a valid alternative to a conventional plan-driven approach as long as it is 
understood by the development team, acceptable to the organisation and scaleable 
to address the communication needs of large development teams.

•	 A software requirements document is an agreed and normally contractual statement 
of functional requirements (what the system should do) and non-functional 
requirements (constraints to be imposed on the system).

•	 The requirements engineering process includes an iterative and validated process of 
discovery, analysis and documentation of changing customer requirements.

http://www.crazycolour.com/prince2/%3Ftitle%3DMain_Page
http://www.crazycolour.com/prince2/%3Ftitle%3DMain_Page


www.manaraa.com

44

CO3353 Software engineering project management

By now, you should be confident that you would be able to:

1.	 Define the scope of a project in terms of core requirements, key features and the main 
constraints and risks.

2.	 Produce a plan describing the development process that you would follow, supported 
by estimates of cost and schedule in line with the client’s business case.



www.manaraa.com

105

Appendix 2: Revision support

Appendix 2: Revision support
Collected together below in Appendix 2 are what you should have gained from each main 
chapter, in terms of your abilities to carry out these tasks and activities, and to understand 
the processes underlying them in terms of the four main phases.

This is followed in Appendix 3 by the collected set of all cornerstone points made in 
the subject guide to aid revision. Appendix 4 contains ‘Revision guidance notes’, while 
Appendix 5 contains a Sample examination paper. Finally, Appendix 6 contains an outline 
marking scheme, but no sample answers.

Summary of main processes in the four phases
Inception phase Scoping and justifying a project.

Elaboration phase Defining a response to stakeholder needs.

Construction phase Managing the provision of the functionality 
agreed.

Transition phase Producing a product release.

1. Inception phase

Software processes
•	 Understand the concept of a process model as a way of describing a software 

development project and differentiate between common approaches such as 
waterfall, iterative and agile.

•	 Identify the key artefacts produced during an iteration of the software development 
process.

•	 Understand the role of the project manager in delivering those artefacts.

•	 Understand the ways in which the development process can affect quality.

Requirements engineering
•	 Describe the differences between elicitation, specification, validation and 

documentation of requirements.

•	 Understand the differences between system and user requirements and between 
functional and non-functional requirements.

•	 Use natural language and graphical representations of requirements within a 
requirements document.

•	 Produce a system model based on requirements.

Planning, cost and schedule estimation
•	 Describe the structure of a project schedule.

•	 Apply resources to execute a project plan.

•	 Understand the constraints on the accuracy of resourcing and budgeting.

•	 Define the scope of a project in terms of core requirements, key features and the 
main constraints and risks.

•	 Produce a plan describing the development process that you would follow, 
supported by estimates of cost and schedule in line with the client’s business 
case.



www.manaraa.com

106

CO3353 Software engineering project management

2. Elaboration phase

Risk management
•	 Describe the steps required in order to understand how a risk should be mitigated, 

monitored and managed.

•	 Give examples of risks created by the use of technical and human resources, the way 
the client and developer organisations work and performance-related risks.

•	 Identify probable causes of risks in those five areas and ways in which pro-active risk 
management can be used to reduce the probability and/or impact.

Architecture, modelling and design
•	 Use UML graphical models to represent the context (external environment) in which 

the system will operate, the interactions between the system and that environment, 
the static and dynamic structures of the system and its responses to stimuli.

•	 Make informed decisions during the architectural design process.

•	 Base a system architecture design on a generic architectural pattern where 
appropriate.

Managing the execution of the project plan
•	 Describe the main functions of a project manager.

•	 Understand the dynamics of a development team.

•	 Identify the tools and infrastructure required for the development environment.

•	 Describe the roles and responsibilities for configuration management.

3. Construction phase

Detailed design
•	 Apply object-oriented principles in the detailed design phase.

•	 Describe the use of UML documentation for decomposing the architectural design 
into usable object-oriented software.

•	 Explain the purpose of design patterns and give examples of design patterns for data-
processing, process-control and e-commerce applications.

Quality management
•	 Define quality as it applies to software engineering and identify the key quality-related 

activities that take place at each phase of the project lifecycle.

•	 Explain the advantages and limitations of qualitative and quantitative quality 
measures and give examples of each.

•	 Validate that the current project plan and architecture design are complete and 
able to deliver the project vision and requirements.

•	 Demonstrate that major risks have been identified and that each is being 
managed appropriately.

•	 Validate that the system being developed is fit for purpose.

•	 Be able to deploy it for beta-testing with the target user community.

•	 Provide those users with the necessary documentation and support, including 
training.



www.manaraa.com

107

Appendix 2: Revision support

•	 Explain the difference between verification and validation and the purpose of testing 
at the sub-function, component, system and user levels.

4. Transition phase

Evolution
•	 Describe the key decisions that have to be taken when scheduling the next iteration of 

a system.

•	 Explain how process effectiveness can be measured and improved with explicit 
reference to GQM and CMMI.

•	 Validate that the objectives for this iteration of the system have been met and 
that all artefacts are complete.

•	 Initiate the planning of another iteration of system development.

•	 Apply lessons learned.



www.manaraa.com

108

CO3353 Software engineering project management

Notes



www.manaraa.com

109

Appendix 3: Cornerstones

Appendix 3: Cornerstones

Cornerstone 1

Project management is a creative activity. It requires a combination of knowledge, insights and skills 

in order to deliver the required outcomes for each unique project. If you do not take into account the 

specific challenges and rely instead on a single standard approach, you are not a project manager, you 

are a project administrator.

Cornerstone 2

Project management is about controlling the strengths and weaknesses of the project team (and 

enterprise) and the opportunities and threats that can arise and lead to issues for the project, the 

‘internal’ and ‘external’ factors of a SWOT analysis.

Cornerstone 3

A process model is a high-level and incomplete description of the way a project is controlled and how 

it evolves. It introduces interfaces between actors and workflows and transitions between activities. 

Your choice of model does not fundamentally affect WHAT you are going to do; customers still 

need to know that their requirements are the reference point for design and code still needs to be 

tested before and after integration. What the model allows you and your team to do is focus on the 

important transitions during the project.

Cornerstone 4

The purpose of a software project is to meet a client’s need by delivering a software system. That 

system decomposes into sub-systems and components, and each component requires a number 

of products to be built, tested and integrated. There are two approaches that a project manager can 

adopt – focus on the product, or focus on the work required to deliver that product.

Cornerstone 5

A best practice in common use is the breakdown structure. A Work Breakdown Structure, for example, 

decomposes the project into phases, decomposes phases into activities and activities into tasks and 

sub-tasks. You can describe dependencies from one to another through a Work Flow Diagram (e.g. 

a GANTT chart). Similarly, you can represent the relationships between artefacts from a project in 

a Product Flow Diagram, which then defines the order in which they must be completed. You can 

also use breakdown structures to ensure that an analysis of factors such as risks or competences is 

comprehensive.

Cornerstone 6

A specification document must comply with the ‘four C’s’:

Clear: No ambiguities or confusing cross references to other documents.

Concise: No unnecessary detail, repetition or confusing cross-references to other documents.

Correct: Attributed, with no conjecture, paraphrasing or unsubstantiated opinion.

Complete: Verified as part of the V & V process.



www.manaraa.com

110

CO3353 Software engineering project management

Cornerstone 7

The project team invariably focuses on the outputs it is to create, while the client is concerned with 

the outcomes of using those outputs. ‘Outcome-based specifications’ address the client’s needs and 

do not prescribe how they are to be met.

Cornerstone 8

Functional requirements describe the way the system behaves.

Non-functional requirements describe the context within which that system behaviour is delivered.

User requirements are the functional and non-functional requirements that describe the business 

goals for the system.

System requirements are the functional and non-functional requirements that have to be met in 

order to achieve the business goals for the system.

Cornerstone 9

ISO/IEC 12207 defines validation as confirmation that the final, as-built, system fulfils its specific 

intended use, that it is ‘fit for purpose’. Verification confirms that the output of each activity (such 

as requirements capture, design, code, integration or documentation) fulfils the requirements or 

conditions imposed by preceding activities.

This is often expressed in terms of validating that the ‘right thing’ is being built and verifying that the 

thing is being ‘built right’.

Cornerstone 10

The outcome of a risk analysis should reflect the status of the project AFTER the mitigation has been 

brought into the project plan, in other words the risk register reflects the residual risk only. This implies 

that risk assessment is an iterated or continuous process in order to re-evaluate mitigated risks.

Cornerstone 11

When deciding whether to use the UML during architectural design, you need to be able to answer 

yes to the following five questions.

1.	 Do we have good tools for doing things this way?

2.	 Do we understand how to use them?

3.	 Do we know what we are trying to achieve?

4.	 Will we document the decisions taken clearly?

5.	 Will the client understand the result?

Cornerstone 12

Formal documents are critical. They tend to be kept (if not actually read) and they tend to change 

over time. Do not simply flag the changes by giving a document a different date in its filename or 

by changing the name from V0.2 to V0.3. Give formal documents a history section and keep them 

(without ever changing the filename) in a document archive such as Sharepoint. The LEAN philosophy 

acts as a good guide: if you are not going to keep it, don’t bother updating it. Conversely, if you do not 

maintain it, there is little point in keeping it!



www.manaraa.com

111

Appendix 3: Cornerstones

Cornerstone 13

‘A team is not a bunch of people with job titles, but a congregation of individuals, each of whom has 

a role which is understood by other members. Members of a team seek out certain roles and they 

perform most effectively in the ones that are most natural to them.’ (Dr R.M. Belbin)


